
MAterials Simulation Toolkit for
Machine Learning (MAST-ML)

Documentation
Release 2.0

University of Wisconsin-Madison Computational Materials Group

Apr 13, 2021

Contents

1 Acknowledgements 1

2 Installing MAST-ML 3
2.1 Hardware and Data Requirements . 3
2.2 Terminal installation (Linux or linux-like terminal on Mac) . 3
2.3 Windows installation . 4
2.4 Startup . 6

3 MAST-ML Input File 9
3.1 Input file sections . 9

4 MAST-ML overview slides 21

5 Running MAST-ML on Google Colab 31

6 MAST-ML tutorial 33
6.1 Introduction . 33
6.2 Your first MAST-ML run . 33
6.3 Cleaning input data . 35
6.4 Feature generation and normalization . 36
6.5 Training and evaluating your first model . 37
6.6 Feature selection and learning curves . 40
6.7 Hyperparameter optimization . 44
6.8 Random leave-out versus leave-out-group cross-validation . 46
6.9 Making predictions by importing a previously fit model . 51
6.10 Predicting values for new, extrapolated data . 53

7 Code Documentation: Metrics 57
7.1 mastml.metrics Module . 57

8 Code Documentation: Configuration file parser 59
8.1 mastml.conf_parser Module . 59

9 Code Documentation: Data cleaner 61
9.1 mastml.data_cleaner Module . 61

10 Code Documentation: Data loader 65
10.1 mastml.data_loader Module . 65

i

11 Code Documentation: Learning curve 67
11.1 mastml.learning_curve Module . 67

12 Code Documentation: Clusterers 69
12.1 mastml.legos.clusterers Module . 69

13 Code Documentation: Data splitters 71
13.1 mastml.legos.data_splitters Module . 71

14 Code Documentation: Utils 77
14.1 mastml.utils Module . 77

15 Code Documentation: MAST-ML Driver 83
15.1 mastml.mastml_driver Module . 83

16 Code Documentation: Plot Helper 87
16.1 mastml.plot_helper Module . 87

17 Code Documentation: HTML Helper 105
17.1 mastml.html_helper Module . 105

18 Code Documentation: Feature Selectors 109
18.1 mastml.legos.feature_selectors Module . 109

19 Code Documentation: Feature Normalizers 115
19.1 mastml.legos.feature_normalizers Module . 115

20 Code Documentation: Randomizers 119
20.1 mastml.legos.randomizers Module . 119

21 Code Documentation: Model Finder 121
21.1 mastml.legos.model_finder Module . 121

22 Code Documentation: Utility Legos 127
22.1 mastml.legos.util_legos Module . 127

23 Code Documentation: Feature Generators 131
23.1 mastml.legos.feature_generators Module . 131

24 Indices and tables 143

Python Module Index 145

Index 147

ii

CHAPTER 1

Acknowledgements

Materials Simulation Toolkit for Machine Learning (MAST-ML)

MAST-ML is an open-source Python package designed to broaden and accelerate the use of machine learning in
materials science research

Contributors

University of Wisconsin-Madison Computational Materials Group:

• Prof. Dane Morgan

• Dr. Ryan Jacobs

• Dr. Tam Mayeshiba

• Ben Afflerbach

• Dr. Henry Wu

University of Kentucky contributors:

• Luke Harold Miles

• Robert Max Williams

• Prof. Raphael Finkel

MAST-ML documentation:

An overview of code documentation and tutorials for getting started with MAST-ML can be found here

Funding

This work was and is funded by the National Science Foundation (NSF) SI2 award No. 1148011 and DMREF award
number DMR-1332851

Citing MAST-ML

If you find MAST-ML useful, please cite the following publication:

Jacobs, R., Mayeshiba, T., Afflerbach, B., Miles, L., Williams, M., Turner, M., Finkel, R., Morgan, D., “The Materials
Simulation Toolkit for Machine Learning (MAST-ML): An automated open source toolkit to accelerate data- driven

1

https://mastmldocs.readthedocs.io/en/latest/

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

materials research”, Computational Materials Science 175 (2020), 109544. https://doi.org/10.1016/j.commatsci.2020.
109544

Code Repository

MAST-ML is available on PyPi: pip install mastml

MAST-ML is available on Github <https://github.com/uw-cmg/MAST-ML>

git clone –single-branch master https://github.com/uw-cmg/MAST-ML

2 Chapter 1. Acknowledgements

https://doi.org/10.1016/j.commatsci.2020.109544
https://doi.org/10.1016/j.commatsci.2020.109544
https://github.com/uw-cmg/MAST-ML

CHAPTER 2

Installing MAST-ML

2.1 Hardware and Data Requirements

2.1.1 Hardware

PC or Mac computer capable of running python 3.

2.1.2 Data

• Numeric data file in the form of .csv or .xlsx file. There must be at least some target feature data, so that models
can be fit.

• First row of file (each column) should have a text name (as string) which is how columns will be referenced later
in the input file.

• If working in Jupyter environment, can also directly pass in a pandas dataframe

2.2 Terminal installation (Linux or linux-like terminal on Mac)

2.2.1 Install Python3

Install Python 3: for easier installation of numpy and scipy dependencies, download Anaconda from https://www.
continuum.io/downloads

Create a conda environment

Create an environment:

3

https://www.continuum.io/downloads
https://www.continuum.io/downloads

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

conda create --name MAST_ML python=3.7
conda activate MAST_ML
pip install mastml

Set up Juptyer notebooks

There is no separate setup for Jupyter notebooks necessary; once MASTML has been run and created a notebook, then
in the terminal, navigate to a directory housing the notebook and type:

jupyter notebook

and a browser window with the notebook should appear.

2.2.2 Install the MAST-ML package

Pip install MAST-ML from PyPi:

pip install mastml

Alternatively, git clone the Github repository, for example:

git clone https://github.com/uw-cmg/MAST-ML

Clone from “master” unless instructed specifically to use another branch. Ask for access if you cannot find this code.

Check status.github.com for issues if you believe github may be malfunctioning

Run:

python setup.py install

Imports that don’t work

First try anaconda install, and if that gives errors try pip install Example: conda install numpy , or pip install numpy
Put the path to the installed MAST-ML folder in your PYTHONPATH if it isn’t already

2.3 Windows installation

2.3.1 Install Python3

Install Python 3: for easier installation of numpy and scipy dependencies, download anaconda from https://www.
continuum.io/downloads

Create a conda environment

From the Anaconda Navigator, go to Environments and create a new environment Select python version 3.6

Under “Channels”, along with defaults channel, “Add” the “materials” channel. The Channels list should now read:

4 Chapter 2. Installing MAST-ML

https://www.continuum.io/downloads
https://www.continuum.io/downloads

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

defaults
materials

(may be the “matsci” channel instead of the “materials” channel; this channel is used to install pymatgen)

Set up the Spyder IDE and Jupyter notebooks

From the Anaconda Navigator, go to Home With the newly created environment selected, click on “Install” below
Jupyter. Click on “Install” below Spyder.

Once the MASTML has been run and has created a jupyter notebook (run MASTML from a location inside the
anaconda environment, so that the notebook will also be inside the environment tree), from the Anaconda Navigator,
go to Environments, make sure the environment is selected, press the green arrow button, and select Open jupyter
notebook.

2.3.2 Install the MAST-ML package

Pip install MAST-ML from PyPi:

pip install mastml

Alternatively, git clone the Github repository, for example:

git clone https://github.com/uw-cmg/MAST-ML

Clone from “master” unless instructed specifically to use another branch. Ask for access if you cannot find this code.

Check status.github.com for issues if you believe github may be malfunctioning

Run:

python setup.py install

Imports that don’t work

First try anaconda install, and if that gives errors try pip install Example: conda install numpy , or pip install numpy
Put the path to the installed MAST-ML folder in your PYTHONPATH if it isn’t already

2.3.3 Windows 10 install: step-by-step guide (credit Joe Kern)

First, figure out if your computer is 32 or 64-bit. Type “system information” in your search bar. Look at system type.
x86 is a 32-bit computer, x64 is a 64-bit.

Second, download an environment manager. Environments are directories in your computer that store dependencies.
For instance, one program you run might be dependent on version 1.0 of another program x. However, another
program you have might be dependent on version 2.0 of program x. Having multiple environments allows you utilize
both programs and dependencies on your computer. I will recommend you download anaconda, not because it is the
best, but because it is an environment manager I know how to get working with MAST-ML. Feel free to experiment
with other managers. Download the Python 3.7 version at https://www.anaconda.com/distribution/, just follow the
installation instructions. Pick the graphical installer that corresponds with your computer system (64 bit or 32 bit).

Third, download Visual studio. Some of the MAST-ML dependencies require C++ distributables in order to run.
Visual Studio Code is a code editor made for Windows 10. The dependencies for MAST-ML will look in the Visual

2.3. Windows installation 5

https://www.anaconda.com/distribution/

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Studio Code folder for these C++ distributables when they download. There may be another way to download these
these C++ distributables without Visual Studio Code, but I am not sure how to do that. Go here to download https:
//visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017

Fourth, download Visual Studio with C++ build tools and restart the computer

Fifth, Open anaconda navigator. Click Environments and create at the bottom. Name it MASTML and make it Python
3.6. DO NOT MAKE IT Python 3.7 or Python version 2.6 or 2.7. Some dependencies do not work with those other
version.

Sixth, click the arrow next to your environment name and open a command shell. In the command line type “pip
install “ and then copy paste the dependency names from the dependency file into your command prompt.

Seventh, test if MAST-ML runs. There are multiple ways to do this, but I will outline one. Navigate to your MAST-ML
folder in the command prompt. To do this, you need to know the command ‘cd’. Typing ‘cd’ will let you change the
directory you command prompt is operating in. In order to navigate to your mast-ml folder, right click the folder and
click properties. Copy the location and in the command prompt type ‘cd’ and paste the location after. Add a ‘Mast-ml’
or whatever your folder is called to the end of the pasted value so you can get to mastml

Finally, copy paste python -m mastml.mastml_driver mastml/tests/conf/example_input.conf
mastml/tests/csv/example_data.csv -o results/mastml_tutorial into your command prompt and run. If it all
works, you’re good to go.

2.4 Startup

2.4.1 Locate the examples folder

In the installed MASTML directory, navigate to the tests folder.

Under tests/conf, The file example_input.conf will use the example_data.xlsx data file located in
tests/csv to run an example.

2.4.2 Run the MASTML command

The format is python3 -m mastml.mastml_driver <path to config file> <path to data .
xlsx file> -o <path to results folder>

For example, to conduct the test run above, while in the MASTML install directory:

python3 -m mastml.mastml_driver tests/conf/example_input.conf tests/csv/example_data.
→˓xlsx -o results/example_results

This is a terminal command. For Windows, assuming setup has been followed as above, go to the Anaconda Navigator,
Environments, select the environment, click the green arrow button, and Open terminal.

When you execute the above command, you’ll know it’s working if you begin to see output on your screen.

2.4.3 Check output

index.html should be created, linking to certain representative plots for each test

For this example, output will be located in subfolders in the results/example_results folder.

Check the following to see if the run completed successfully:

6 Chapter 2. Installing MAST-ML

https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

A log.log file is generated and the last line contains the phrase "Making html file
→˓of all run stats..."
An index.html file that gives some summary plots from all the tests that were run
A series of subfolders with names "StandardScaler"->"DoNothing"->"KernelRidge", with
→˓the following three directories
within the "KernelRidge" directory: "LeaveOneGroupOut_host", "NoSplit", and
→˓"RepeatedKFold"

You can compare all of these files with those given in the /example_results directory which should match.

2.4. Startup 7

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

8 Chapter 2. Installing MAST-ML

CHAPTER 3

MAST-ML Input File

This document provides an overview of the various sections and fields of the MAST-ML input file.

A full template input file can be downloaded here: MASTML_InputFile

3.1 Input file sections

3.1.1 General Setup

The “GeneralSetup” section of the input file allows the user to specify an assortment of basic MAST-ML parameters,
ranging from which column names in the .xlsx file to use as features for fitting (i.e. X data) or to fit to (i.e. y data), as
well as which metrics to employ in fitting a model, among other things.

Example:

[GeneralSetup]
input_features = feature_1, feature_2, etc. or "Auto"
input_target = target_feature
randomizer = False
metrics = root_mean_squared_error, mean_absolute_error, etc. or "Auto"
input_other = additional_feature_1, additional_feature_2
input_grouping = grouping_feature_1
input_testdata = validation_feature_1

• input_features List of input X features

• input_target Target y feature

• randomizer Whether or not to randomize y feature data. Useful for establishing a null “baseline” test

• metrics Which metrics to evaluate model fits

• input_other Additional features that are not to be fitted on (i.e. not X features)

• input_grouping Feature names that provide information on data grouping

9

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

• input_test Feature name that designates whether data will be used for validation (set rows as 1 or 0 in csv file)

3.1.2 Data Cleaning

The “DataCleaning” section of the input file allows the user to clean their data to remove rows or columns that contain
empty or NaN fields, or fill in these fields using imputation or principal component analysis methods.

Example:

[DataCleaning]
cleaning_method = remove, imputation, ppca
imputation_strategy = mean, median

• cleaning_method Method of data cleaning. “remove” simply removes columns with missing data. “imputation”
uses basic operation to fill in missing values. “ppca” uses principal component analysis to fill in missing values.

• imputation_strategy Only valid field if doing imputation, selects method to impute missing data by using mean,
median, etc. of the column

3.1.3 Clustering

Optional section to perform clustering of data using well-known clustering algorithms available in scikit-learn. Note
that the subsection names must match the corresponding name of the routine in scikit-learn. More information on
clustering routines and the parameters to set for each routine can be found here: http://scikit-learn.org/stable/modules/
classes.html#module-sklearn.cluster For the purpose of this full input file, we use the scikit-learn default parameter
values. Note that not all parameters are listed.

Example:

[Clustering]
[[AffinityPropagation]]

damping = 0.5
max_iter = 200
convergence_iter = 15
affinity = euclidean

[[AgglomerativeClustering]]
n_clusters = 2
affinity = euclidean
compute_full_tree = auto
linkage = ward

[[Birch]]
threshold = 0.5
branching_factor = 50
n_clusters = 3

[[DBSCAN]]
eps = 0.5
min_samples = 5
metric = euclidean
algorithm = auto
leaf_size = 30

[[KMeans]]
n_clusters = 8
n_init = 10
max_iter = 300
tol = 0.0001

[[MiniBatchKMeans]]

(continues on next page)

10 Chapter 3. MAST-ML Input File

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

n_clusters = 8
max_iter = 100
batch_size = 100

[[MeanShift]]
[[SpectralClustering]]

n_clusters = 8
n_init = 10
gamma = 1.0
affinity = rbf

3.1.4 Feature Generation

Optional section to perform feature generation based on properties of the constituent elements. These routines were
custom written for MAST-ML, except for PolynomialFeatures. For more information on the MAST-ML custom
routines, consult the MAST-ML online documentation. For more information on PolynomialFeatures, see: http:
//scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

Example:

[FeatureGeneration]
[[Magpie]]

composition_feature = Material Compositions
feature_types = composition_avg, arithmetic_avg, max, min, difference

[[MaterialsProject]]
composition_feature = Material Compositions
api_key = my_api_key

[[Citrine]]
composition_feature = Material Compositions
api_key = my_api_key

[[ContainsElement]]
composition_feature = Host element
all_elements = False
element = Al
new_name = has_Al

[[PolynomialFeatures]]
degree=2
interaction_only=False
include_bias=True

• composition_feature Name of column in csv file containing material compositions

• feature_types Types of elemental features to output. If None is specified, all features are output. Note “ele-
ments” refers to properties of constituent elements

• api_key Your API key to access the Materials Project or Citrine. Register for your account at Materials Project:
https://materialsproject.org or at Citrine: https://citrination.com

• all_elements For ContainsElement, whether or not to scan all data rows to assess all elements present in data
set

• element For ContainsElement, name of element of interest. Ignored if all_elements = True

• new_name For ContainsElement, name of new feature column to generate. Ignored if all_elements = True

3.1. Input file sections 11

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://materialsproject.org
https://citrination.com

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

3.1.5 Feature Normalization

Optional section to perform feature normalization of the input or generated features using well-known feature normal-
ization algorithms available in scikit-learn. Note that the subsection names must match the corresponding name of
the routine in scikit-learn. More information on normalization routines and the parameters to set for each routine can
be found here: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing . For the purpose of
this full input file, we use the scikit-learn default parameter values. Note that not all parameters are listed, and only
the currently listed normalization routines are supported. In addition, MeanStdevScaler is a custom written normal-
ization routine for MAST-ML. Additional information on MeanStdevScaler can be found in the online MAST-ML
documentation.

Example:

[FeatureNormalization]
[[Binarizer]]

threshold = 0.0
[[MaxAbsScaler]]
[[MinMaxScaler]]
[[Normalizer]]

norm = l2
[[QuantileTransformer]]

n_quantiles = 1000
output_distribution = uniform

[[RobustScaler]]
with_centering = True
with_scaling = True

[[StandardScaler]]
[[MeanStdevScaler]]

mean = 0
stdev = 1

3.1.6 Learning Curve

Optional section to perform learning curve analysis on a dataset. Two types of learning curves will be generated: a
data learning curve (score vs. amount of training data) and a feature learning curve (score vs. number of features).

Example:

[LearningCurve]
estimator = KernelRidge_learn
cv = RepeatedKFold_learn
scoring = root_mean_squared_error
n_features_to_select = 5
selector_name = MASTMLFeatureSelector

• estimator A scikit-learn model/estimator. The name needs to match an entry in the [Models] section. Note this
model will be removed from the [Models] list after the learning curve is generated.

• cv A scikit-learn cross validation generator. The name needs to match an entry in the [DataSplits] section. Note
this method will be removed from the [DataSplits] list after the learning curve is generated.

• scoring A scikit-learn scoring method compatible with MAST-ML. See the MAST-ML online docu-
mentation at https://htmlpreview.github.io/?https://raw.githubusercontent.com/uw-cmg/MAST-ML/dev_Ryan_
2018-10-29/docs/build/html/3_metrics.html for more information.

• n_features_to_select The max number of features to use for the feature learning curve.

12 Chapter 3. MAST-ML Input File

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
https://htmlpreview.github.io/?https://raw.githubusercontent.com/uw-cmg/MAST-ML/dev_Ryan_2018-10-29/docs/build/html/3_metrics.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/uw-cmg/MAST-ML/dev_Ryan_2018-10-29/docs/build/html/3_metrics.html

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

• selector_name Method to conduct feature selection for the feature learning curve. The name needs to match an
entry in the [FeatureSelection] section. Note this method will be removed from the [FeatureSelection] section
after the learning curve is generated.

3.1.7 Feature Selection

Optional section to perform feature selection using routines in scikit-learn, mlxtend and custom-written for MAST-ML.
Note that the subsection names must match the corresponding name of the routine in scikit-learn. More information on
selection routines and the parameters to set for each routine can be found here: http://scikit-learn.org/stable/modules/
classes.html#module-sklearn.feature_selection . For the purpose of this full input file, we use the scikit-learn default
parameter values. Note that not all parameters are listed, and only the currently listed selection routines are supported.
In addition, MASTMLFeatureSelector is a custom written selection routine for MAST-ML. Additional information on
MASTMLFeatureSelector can be found in the online MAST-ML documentation. Finally, SequentialFeatureSelector
is a routine available from the mlxtend package, which documention can be found here: http://rasbt.github.io/mlxtend/

Example:

[FeatureSelection]
[[GenericUnivariateSelect]]
[[SelectPercentile]]
[[SelectKBest]]
[[SelectFpr]]
[[SelectFdr]]
[[SelectFwe]]
[[RFE]]

estimator = RandomForestRegressor_selectRFE
n_features_to_select = 5
step = 1

[[SequentialFeatureSelector]]
estimator = RandomForestRegressor_selectSFS
k_features = 5

[[RFECV]]
estimator = RandomForestRegressor_selectRFECV
step = 1
cv = LeaveOneGroupOut_selectRFECV
min_features_to_select = 1

[[SelectFromModel]]
estimator = KernelRidge_selectfrommodel
max_features = 5

[[VarianceThreshold]]
threshold = 0.0

[[PCA]]
n_components = 5

[[MASTMLFeatureSelector]]
estimator = KernelRidge_selectMASTML
n_features_to_select = 5
cv = LeaveOneGroupOut_selectMASTML
Any features you want to keep from the start, then use these to

→˓subsequently do forward selection
manually_selected_features = myfeature_1, myfeature_2

[[EnsembleModelFeatureSelector]]
A scikit-learn model/estimator. Needs to have estimator feature ranking.

→˓The name needs to match an entry in the [Models] section.
estimator = RandomForestRegressor_selectEnsemble
number of features to select
k_features = 5

(continues on next page)

3.1. Input file sections 13

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection
http://rasbt.github.io/mlxtend/

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

[[PearsonSelector]]
threshold for removal of redundant features
threshold_between_features = 0.9
threshold for removal of features not sufficiently correlated with target
threshold_with_target = 0.8
whether to remove features that are highly correlated with each other (i.e.

→˓redundant)
remove_highly_correlated_features = True
number of features to select
k_features = 5

• estimator A scikit-learn model/estimator. The name needs to match an entry in the [Models] section. Note this
model will be removed from the [Models] list after the learning curve is generated.

• n_features_to_select The max number of features to select

• step For RFE and RFECV, the number of features to remove in each step

• k_features For SequentialFeatureSelector, the max number of features to select.

• cv A scikit-learn cross validation generator. The name needs to match an entry in the [DataSplits] section. Note
this method will be removed from the [DataSplits] list after the learning curve is generated.

3.1.8 Data Splits

Optional section to perform data splits using cross validation routines in scikit-learn, and custom-written for MAST-
ML. Note that the subsection names must match the corresponding name of the routine in scikit-learn. More informa-
tion on selection routines and the parameters to set for each routine can be found here: http://scikit-learn.org/stable/
modules/classes.html#module-sklearn.model_selection . For the purpose of this full input file, we use the scikit-learn
default parameter values. Note that not all parameters are listed, and only the currently listed data split routines are
supported. In addition, NoSplit is a custom written selection routine for MAST-ML, which simply produces a full data
fit with no cross validation. Additional information on NoSplit can be found in the online MAST-ML documentation.

Example:

[DataSplits]
[[NoSplit]]
[[KFold]]

shuffle = True
n_splits = 10

[[RepeatedKFold]]
n_splits = 5
n_repeats = 10

Here, an example of another instance of RepeatedKFold, this one being used in
→˓the [LearningCurve] section above.

[[RepeatedKFold_learn]]
n_splits = 5
n_repeats = 10

[[GroupKFold]]
n_splits = 3

[[LeaveOneOut]]
[[LeavePOut]]

p = 10
[[RepeatedStratifiedKFold]]

n_splits = 5
n_repeats = 10

(continues on next page)

14 Chapter 3. MAST-ML Input File

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

[[StratifiedKFold]]
n_splits = 3

[[ShuffleSplit]]
n_splits = 10

[[StratifiedShuffleSplit]]
n_splits = 10

[[LeaveOneGroupOut]]
The column name in the input csv file containing the group labels
grouping_column = Host element

Here, an example of another instance of LeaveOneGroupOut, this one being used
→˓in the [FeatureSelection] section above.

[[LeaveOneGroupOut_selectMASTML]]
The column name in the input csv file containing the group labels
grouping_column = Host element

Here, an example of another instance of LeaveOneGroupOut, this one being used
→˓based on the creation of the "has_Al"

group from the [[ContainsElement]] routine present in the [FeatureGeneration]
→˓section.

[[LeaveOneGroupOut_Al]]
grouping_column = has_Al

Here, an example of another instance of LeaveOneGroupOut, this one being used
→˓based on the creation of clusters

from the [[KMeans]] routine present in the [Clustering] section.
[[LeaveOneGroupOut_kmeans]]

grouping_column = KMeans
[[LeaveCloseCompositionsOut]]

Set the distance threshold in composition space
dist_threshold=0.1

[[Bootstrap]]
Data set size
n = 378
Number of bootstrap resamplings to perform
n_bootstraps = 10
Training set size
train_size = 303
Validation/test set size
test_size = 75

3.1.9 Models

Optional section to denote different models/estimators for model fitting from scikit-learn. Note that the subsection
names must match the corresponding name of the routine in scikit-learn. More information on different model routines
and the parameters to set for each routine can be found here for ensemble methods: http://scikit-learn.org/stable/
modules/classes.html#module-sklearn.ensemble and here for kernel ridge and linear methods: http://scikit-learn.org/
stable/modules/classes.html#module-sklearn.kernel_ridge and here for neural network methods: http://scikit-learn.
org/stable/modules/classes.html#module-sklearn.neural_network and here for support vector machine and decision
tree methods: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm . For the purpose of this full
input file, we use the scikit-learn default parameter values. Note that not all parameters are listed, and only the
currently listed data split routines are supported.

Example:

[Models]
Ensemble methods

(continues on next page)

3.1. Input file sections 15

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_ridge
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_ridge
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

[[AdaBoostClassifier]]
n_estimators = 50
learning_rate = 1.0

[[AdaBoostRegressor]]
n_estimators = 50
learning_rate = 1.0

[[BaggingClassifier]]
n_estimators = 50
max_samples = 1.0
max_features = 1.0

[[BaggingRegressor]]
n_estimators = 50
max_samples = 1.0
max_features = 1.0

[[ExtraTreesClassifier]]
n_estimators = 10
criterion = gini
min_samples_split = 2
min_samples_leaf = 1

[[ExtraTreesRegressor]]
n_estimators = 10
criterion = mse
min_samples_split = 2
min_samples_leaf = 1

[[GradientBoostingClassifier]]
loss = deviance
learning_rate = 1.0
n_estimators = 100
subsample = 1.0
criterion = friedman_mse
min_samples_split = 2
min_samples_leaf = 1

[[GradientBoostingRegressor]]
loss = ls
learning_rate = 0.1
n_estimators = 100
subsample = 1.0
criterion = friedman_mse
min_samples_split = 2
min_samples_leaf = 1

[[RandomForestClassifier]]
n_estimators = 10
criterion = gini
min_samples_leaf = 1
min_samples_split = 2

[[RandomForestRegressor]]
n_estimators = 10
criterion = mse
min_samples_leaf = 1
min_samples_split = 2

Here, an example of another instance of RandomForestRegressor, this one being
→˓used based by the [[EnsembleFeatureSelector]]

method from the [FeatureSelection] section.
[[RandomForestRegressor_selectEnsemble]]

n_estimators = 100
criterion = mse

[[XGBoostClassifier]]
(continues on next page)

16 Chapter 3. MAST-ML Input File

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

[[XGBoostRegressor]]
n_estimators = 100
objective = reg:squarederror

Kernel ridge and linear methods

[[KernelRidge]]
alpha = 1
kernel = linear

Here, an example of another instance of KernelRidge, this one being used based
→˓by the [[MASTMLFeatureSelector]]

method from the [FeatureSelection] section.
[[KernelRidge_selectMASTML]]

alpha = 1
kernel = linear

Here, an example of another instance of KernelRidge, this one being used based
→˓in the [LearningCurve] section.

[[KernelRidge_learn]]
alpha = 1
kernel = linear

[[ARDRegression]]
n_iter = 300

[[BayesianRidge]]
n_iter = 300

[[ElasticNet]]
alpha = 1.0

[[HuberRegressor]]
epsilon = 1.35
max_iter = 100

[[Lars]]
[[Lasso]]

alpha = 1.0
[[LassoLars]]

alpha = 1.0
max_iter = 500

[[LassoLarsIC]]
criterion = aic
max_iter = 500

[[LinearRegression]]
[[LogisticRegression]]

penalty = l2
C = 1.0

[[Perceptron]]
alpha = 0.0001

[[Ridge]]
alpha = 1.0

[[RidgeClassifier]]
alpha = 1.0

[[SGDClassifier]]
loss = hinge
penalty = l2
alpha = 0.0001

[[SGDRegressor]]
loss = squared_loss
penalty = l2
alpha = 0.0001

(continues on next page)

3.1. Input file sections 17

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

Neural networks

[[MLPClassifier]]
hidden_layer_sizes = 100,
activation = relu
solver = adam
alpha = 0.0001
batch_size = auto
learning_rate = constant

[[MLPRegressor]]
hidden_layer_sizes = 100,
activation = relu
solver = adam
alpha = 0.0001
batch_size = auto
learning_rate = constant

[[KerasRegressor]]
[[[Layer1]]]

layer_type = Dense
neuron_num= 100
input_dim= 287 #typically equal to n_features
kernel_initializer= random_normal
activation=relu

[[[Layer2]]]
layer_type = Dense
neuron_num= 50
kernel_initializer= random_normal
activation=relu

[[[Layer3]]]
layer_type = Dense
neuron_num= 25
kernel_initializer= random_normal
activation=relu

[[[Layer4]]]
layer_type = Dense
neuron_num= 1
kernel_initializer= random_normal
activation=linear

[[[FitParams]]]
epochs=20
batch_size=25
loss = mean_squared_error
optimizer = adam
metrics = mse
verbose=1
shuffle = True
#validation_split = 0.2

Support vector machine methods

[[LinearSVC]]
penalty = l2
loss = squared_hinge
tol = 0.0001
C = 1.0

[[LinearSVR]]
(continues on next page)

18 Chapter 3. MAST-ML Input File

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

epsilon = 0.1
loss = epsilon_insensitive
tol = 0.0001
C = 1.0

[[NuSVC]]
nu = 0.5
kernel = rbf
degree = 3

[[NuSVR]]
nu = 0.5
C = 1.0
kernel = rbf
degree = 3

[[SVC]]
C = 1.0
kernel = rbf
degree = 3

[[SVR]]
C = 1.0
kernel = rbf
degree = 3

Decision tree methods

[[DecisionTreeClassifier]]
criterion = gini
splitter = best
min_samples_split = 2
min_samples_leaf = 1

[[DecisionTreeRegressor]]
criterion = mse
splitter = best
min_samples_split = 2
min_samples_leaf = 1

[[ExtraTreeClassifier]]
criterion = gini
splitter = random
min_samples_split = 2
min_samples_leaf = 1

[[ExtraTreeRegressor]]
criterion = mse
splitter = random
min_samples_split = 2
min_samples_leaf = 1

3.1.10 Misc Settings

This section controls which types of plots MAST-ML will write to the results directory and other miscellaneous
settings.

Example:

[MiscSettings]
plot_target_histogram = True
plot_train_test_plots = True

(continues on next page)

3.1. Input file sections 19

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

plot_predicted_vs_true = True
plot_predicted_vs_true_average = True
plot_best_worst_per_point = True
plot_each_feature_vs_target = False
plot_error_plots = True
rf_error_method = stdev
rf_error_percentile = 95
normalize_target_feature = False

• plot_target_histogram Whether or not to output target data histograms

• plot_train_test_plots Whether or not to output parity plots within each CV split

• plot_predicted_vs_true Whether or not to output summarized parity plots

• plot_predicted_vs_true_average Whether or not to output averaged parity plots

• plot_best_worst_per_point Whether or not to output parity plot showing best and worst split per point

• plot_each_feature_vs_target Whether or not to show plots of target feature as a function of each individual
input feature

• plot_error_method Whether or not to show the individual and average plots of the normalized errors

• rf_error_method If using random forest, whether to calculate error bars with stdev or confidence intervals
(confint)

• rf_error_percentile If using confint above, the confidence interval to use to calculate the error bars

• normalize_target_feature Whether or not to normalize the target feature values

20 Chapter 3. MAST-ML Input File

CHAPTER 4

MAST-ML overview slides

The information for this MAST-ML overview shown on this page is available for download here:

MASTMLoverview

Let’s begin with an overview of what MAST-ML is and what it can do:

21

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Here is currently what MAST-ML can do as well as how to acquire it:

22 Chapter 4. MAST-ML overview slides

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

An overview of the general machine learning workflow that MAST-ML executes. Continuing development will focus
on making the workflows more flexible and general

23

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

MAST-ML uses a text-based input file (.conf extension) which consists of different sections (corresponding to each
part of the workflow) and specific subsections (e.g. different machine learning models to test, different feature selection
algorithms, etc.). The input file is discussed in much greater detail here:

MAST-ML Input File

and an input file with the full range of capabilities can be downloaded here:

MASTMLinputfile

24 Chapter 4. MAST-ML overview slides

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Running MAST-ML is easily done with a single-line command in a Terminal/command line, your favorite IDE, or
within a Jupyter notebook

25

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

MAST-ML output takes the form of a full directory tree of results, with each level of the tree corresponding to a
different portion of the machine learning workflow

26 Chapter 4. MAST-ML overview slides

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

The last three figures demonstrate some example output of a few machine learning analysis features MAST-ML offers.
Here, the ability to generate and select features is shown.

27

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

A core feature of MAST-ML is the many pieces of statistical analysis regarding model assessment, which forms the
basis of interpreting the quality and extensibility of a machine learning model.

28 Chapter 4. MAST-ML overview slides

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Finally, MAST-ML offers the ability to easily optimize the model hyperparameters used in your analysis

29

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

30 Chapter 4. MAST-ML overview slides

CHAPTER 5

Running MAST-ML on Google Colab

In addition to running MAST-ML on your own machine or computing cluster, MAST-ML can be run using cloud
resources on Google Colab. This can be advantageous as you don’t have to worry about installing MAST-ML yourself,
and all output files can be saved directly to your Google Drive.

MAST-ML comes with a notebook called MASTML_Colab.ipynb that you can open in Google Colab

MASTML_Colab.ipynb

Once you open the notebook in Google Colab, it will look something like this:

There are a few blocks of code in this notebook. The first block performs a pip install of MAST-ML for this Colab

31

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

session. The second block links your Google Drive to the Colab instance so MAST-ML can save your run output
directly to your Google Drive.

The one thing you’ll need to do from here is to upload a data file (.csv or .xlsx format) and MAST-ML input file (.conf
format) to this Colab session. Files can be uploaded by pressing the vertical arrow on the left side of the screen, by the
file directory tree.

example_input.conf

example_data.xlsx

Note that when a Colab session ends, the files you upload will be deleted. Since your output will be saved to your
Google Drive, the data an input files will be deleted. Note that MAST-ML automatically saves a copy of both of these
files to your output directory for each run you do.

32 Chapter 5. Running MAST-ML on Google Colab

CHAPTER 6

MAST-ML tutorial

6.1 Introduction

This document provides step-by-step tutorials of conducting and analyzing different MAST-ML runs. For this tutorial,
we will be using the dataset example_data.xlsx in the tests/csv/ folder and input file example_input.conf in tests/conf/.

MAST-ML requires two files to run: The first is the text-based input file (.conf extension). This file contains all of the
key settings for MAST-ML, for example, which models to fit and how to normalize your input feature matrix. The
second file is the data file (.csv or .xlsx extension). This is the data file containing the input feature columns and values
(X values) and the corresponding y data to fit models to. The data file may contain other columns that are dedicated
to constructing groups of data for specific tests, or miscellaneous notes, which columns can be selectively left out so
they are not used in the fitting. This will be discussed in more detail below.

Throughout this tutorial, we will be modifying the input file to add and remove different sections and values. For a
complete and more in-depth discussion of the input file and its myriad settings, the reader is directed to the dedicated
input file section:

MAST-ML Input File

The data contained in the example_data.csv file consist of a previously selected matrix of X features created from
combinations of elemental properties, for example the average atomic radius of the elements in the material. The y
data values used for fitting are listed in the “Scaled activation energy (eV)” column, and are DFT-calculated migration
barriers of dilute solute diffusion, referenced to the host system. For example, the value of Ag solute diffusing through
a Ag host is set to zero. The “Host element” and “Solute element” columns denote which species comprise the
corresponding reduced migration barrier.

6.2 Your first MAST-ML run

It’s time to conduct your very first MAST-ML run! First, we will set up the most basic input file, which will only
import your data and input file, and do nothing else except copy the input files to the results directory and output
a basic histogram of the target data. Open the example_input.conf file (or create your own new file), and write the
following in your input file:

33

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Example:

[GeneralSetup]
input_features = Auto
input_target = Scaled activation energy (eV)
randomizer = False
metrics = Auto
input_other = Material composition, Host element, Solute element, predict_Pt

The General Setup section contains high-level control about how your input data file is parsed. Additional details
of each parameter can be found in the MAST-ML Input File section in this documentation. Briefly, setting “in-
put_features” to “Auto” will automatically assign all columns to be part of the X feature matrix, except those that are
associated with target_feature or not_input_features. The option “randomizer” will shuffle all of your y-data, which
can be useful for running a “null” test. The “metrics” option is used to denote which metrics to eventually evaluate
your models on, such as mean_absolute_error. Using “Auto” provides a catalogue of standard metrics which is gen-
erally sufficient for many problems. Finally, the “not_input_features” field is used to denote any feature columns you
don’t want to use in fitting. If some columns contain text notes, these will need to be added here too.

There are two ways to execute a MAST-ML run. The first is to run it via a Terminal or IDE command line by
directly calling the main MAST-ML driver module. Here, the python -m (for module) command is invoked on the
mastml.masml_driver module, and the paths containing the input file and data file are passed in. Lastly, the argument
-o (for output) is used together with the path to put all results files and folders.

Example:

python3 -m mastml.mastml_driver tests/conf/example_input.conf tests/csv/example_data.
→˓xlsx -o results/mastml_tutorial

The second way is to run MAST-ML through a Jupyter notebook by importing mastml and running the mastml_driver
main() method and supply the paths to the input file, data file

Example:

import mastml_driver
conf_path = 'tests/conf/example_input.conf'
data_path = 'tests/conf/example_data.csv'
results_path = 'results/mastml_tutorial'
mastml_driver.main(conf_path, data_path, results_path)

Let’s examine the output from this first run. Below is a screenshot of a Mac directory output tree in the re-
sults/mastml_tutorial folder. Note that you can re-use the same output folder name, and the date and time of the
run will be appended so no work will be lost. Each level of the directory tree corresponds to a step in the general
supervised learning workflow that MAST-ML uses. The first level is general data input and feature generation, the
second level is numerical manipulation of features, and the third level is selection of features. Since we did not do
any feature manipulation in this run, the output selected.csv, normalized.csv and generated_features.csv are all the
same, and are the same file as the copied input data file, example_data.csv. In the main directory tree, there is also a
log.log and errors.log file, which summarize the inner details of the MAST-ML run and flag any errors that may have
occurred. There are two .html files which provide very high-level summaries of data plots and file links that may be of
interest, to make searching for these files easier. Finally, there is some generated data about the statistics of your input
target data. A histogram named target_histogram.png is created, and basic statistical summary of your data is saved in
the input_data_statistics.csv file.

34 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

6.3 Cleaning input data

Now, let’s imagine a slightly more complicated (but realistic) scenario where some of the value of your X feature
matrix are not known. Open your example_data.csv file, and randomly remove some values of the X feature columns
in your dataset. Don’t remove any y data values in the “Reduced Barrier (eV)” column. You’ll need to add the
following section to your input file to handle cleaning of the input data:

Example:

[DataCleaning]
cleaning_method = imputation
imputation_strategy = mean

What this does is perform data imputation, where each missing value will be replaced with the mean value for that
particular feature column. Other data cleaning options include imputation with median values, simply removing rows
of data with missing values, or performing a probabilistic principal component analysis to fill in missing values.

From inspecting the data file in the parent directory to that in the subsequent directories, you can see that the missing
values (here, the first 10 rows of the first several features were removed) have been replaced with the mean values for
each respective feature column:

After data cleaning with imputation:

6.3. Cleaning input data 35

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

6.4 Feature generation and normalization

For this run, we are going to first generate a large X feature matrix based on a suite of elemental properties. Then,
we are going to normalize the feature matrix so that all values in a given feature column have a mean of zero and a
standard deviation equal to one.

To perform the feature generation and normalization steps, add these sections to your input file. Use the same file
from the previous run, which contains the GeneralSetup and DataCleaning sections, and use your data file with the
values you previously removed. (Note that you can use the pristine original data file too, and the data cleaning step
will simply do nothing). For the purpose of this example, we are going to generate elemental features using the
MAGPIE approach, using compositions as specified in the “Solute element” column of the data file. Note that if
multiple elements are present, features containing the average (both mean and composition-weighted averages) of the
elements present will be calculated. The value specified in the composition_feature parameter must be a column name
in your data file which contains the material compositions.

Example:

[FeatureGeneration]
[[Magpie]]

composition_feature = Solute element
feature_types = composition_avg, arithmetic_avg, max, min, difference,

→˓elements

[FeatureNormalization]
[[StandardScaler]]

After performing this run, we can see that the .csv files in the feature generation and normalization folders of the
results directory tree are now updated to reflect the generated and normalized X feature matrices. There are now many
more features in the generated_features.csv file:

36 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Note that feature columns that are identical in all values are removed automatically. We can see that the normalized
feature set consists of each column having mean zero and standard deviation of one:

6.5 Training and evaluating your first model

Now that we have a full X feature matrix that has been normalized appropriately, it is time to train and evaluate your
first model. For this tutorial, we will train a Kernel Ridge model with a radial basis function kernel (also known as
Gaussian Kernel Ridge Regression, GKRR). We need to add two sections of our input file.

The first is the Models section, which provides a list of model types to train and the associated parameter values for
each model. Here, we have chosen values of alpha and gamma equal to 1. There is no reason to think that these are
the optimal parameter values, they were simply chosen as an example. Later in this tutorial we will optimize these
parameters. Note that if you don’t specify the model parameter values, the values used will be the scikit-learn default
values.

The second is the DataSplits section, which controls what types of fits and cross-validation tests will be applied to
each specified model. Here, we have chosen “NoSplit”, which is simply a full y versus X fit of the data, without any
form of cross-validation. We have also denoted “RepeatedKFold”, which is random leave-out cross-validation test. In
this instance, we have 5 splits (so leave out 20%) and do the test two times.

6.5. Training and evaluating your first model 37

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Example:

[Models]
[[KernelRidge]]

kernel = rbf
alpha = 1
gamma = 1

[DataSplits]
[[NoSplit]]
[[RepeatedKFold]]

n_splits = 5
n_repeats = 2

Below is a snapshot of the resulting directory tree generated from this MAST-ML run. You’ll immediately notice the
tree is deeper now, with a new level corresponding to each model we’ve fit (here just the single KernelRidge model),
and, for each model, folders corresponding to each DataSplit test we denoted in the input file. For each data split
method, there are folders and corresponding data plots and files for each hold-out split of the test. For instance, with
the RepeatedKFold test, there were 10 total splits, which are labeled as split_0 through split_9. Contained in each
folder are numerous files, such as different data parity plots of predicted vs. actual values, histograms of residuals,
.csv files for all plotted data, a .pkl file of the exported trained model, and .ipynb Jupyter notebooks useful for custom
modifications of the data plots.

Below is a parity plot from the NoSplit (full data fit) run. The R-squared value is high, but there is significant mean
error. This suggests that the model parameters are not optimal (which shouldn’t be surprising considering we just
picked them arbitrarily).

38 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

From examining the parity plot from the RepeatedKFold run (this is the ‘average_points_with_bars.png’ plot), which
has the averaged values over all 10 splits, we can see that the predictions from random cross validation result in both
a very low R-squared value and a high error. Essentially, cross-validation has shown that this model has no predictive
ability. It seems our issues are two-fold: nonoptimal hyperparameters, and over-fitting. The over-fitting is evident due
to the much worse before of the cross-validated parity plot compared to the full fit.

6.5. Training and evaluating your first model 39

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

6.6 Feature selection and learning curves

As mentioned above, one problem with our current model is over-fitting. To further understand and minimize the
effect of over-fitting, it is often necessary to construct learning curves and perform feature selection to obtain a reduced
feature set which most accurately describes your data. To do this, we are going to add two additional sections to our
input file.

The first section is related to feature selection. Here, we will use the SequentialFeatureSelector algorithm, which
performs forward selection of features. We will select a total of 20 features, and use a KernelRidge model to evaluate
the selected features. Here, we ahve denoted our estimator as “KernelRidge_select”. The models used in feature
selection and learning curves are removed from the model queue, because in general one may want to use a different
model for this step of the analysis than what will ultimately be used for fitting. Therefore, we need to also amend our
models list to have this new KernelRidge_select model, as shown below.

Example:

[FeatureSelection]
[[SequentialFeatureSelector]]

estimator = KernelRidge_select
k_features = 20

[Models]
[[KernelRidge]]

kernel = rbf
alpha = 1
gamma = 1

[[KernelRidge_select]]
kernel = rbf
alpha = 1
gamma = 1

The second section we will add is to plot learning curves. There are two types of learning curves MAST-ML can make:
a data learning curve and feature learning curve. The former is a plot of the metric of interest versus the amount of
training data used in the fits. The latter is a plot of the metric of interest versus the number of features comprising the
X feature matrix. In the example LearningCurve input file section shown below, we are going to use a KernelRidge
model, a random k-fold cross-validation and the root_mean_square_error to evaluate our learning curves. We will also
use a maximum of 20 features, and use the SelectKBest algorithm to assess the choice of features.

Example:

[LearningCurve]
estimator = KernelRidge_learn
cv = RepeatedKFold_learn
scoring = root_mean_squared_error
n_features_to_select = 20
selector_name = SelectKBest

As with the above example of FeatureSelection, we need to add the KernelRidge_learn and RepeatedKFold_learn
entries to the Models and DataSplits sections of our input file, respectively. At this point in the tutorial, the complete
input file should look like this:

Example:

[GeneralSetup]
input_features = Auto
input_target = Reduced barrier (eV)
randomizer = False

(continues on next page)

40 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

metrics = Auto
input_other = Host element, Solute element, predict_Pt

[DataCleaning]
cleaning_method = imputation
imputation_strategy = mean

[FeatureGeneration]
[[Magpie]]

composition_feature = Solute element

[FeatureNormalization]
[[StandardScaler]]

[FeatureSelection]
[[SequentialFeatureSelector]]

estimator = KernelRidge_select
k_features = 20

[LearningCurve]
estimator = KernelRidge_learn
cv = RepeatedKFold_learn
scoring = root_mean_squared_error
n_features_to_select = 20
selector_name = SelectKBest

[Models]
[[KernelRidge]]

kernel = rbf
alpha = 1
gamma = 1

[[KernelRidge_select]]
kernel = rbf
alpha = 1
gamma = 1

[[KernelRidge_learn]]
kernel = rbf
alpha = 1
gamma = 1

[DataSplits]
[[NoSplit]]
[[RepeatedKFold]]

n_splits = 5
n_repeats = 2

[[RepeatedKFold_learn]]
n_splits = 5
n_repeats = 2

Let’s take a look at the same full fit and RepeatedKFold random cross-validation tests for this run:

Full-fit:

6.6. Feature selection and learning curves 41

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Random leave out cross-validation:

What we can see is, now that we down-selected features from more than 300 features in the previous run to just 20
here, that the fits have noticeably improved and the problem of over-fitting has been minimized. Below, we can look
at the plotted learning curves

Data learning curve:

42 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Feature learning curve:

6.6. Feature selection and learning curves 43

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

We can clearly see that, as expected, having more training data will result in better test scores, and adding more
features (up to a certain point) will also result in better fits. Based on these learning curves, one may be able to argue
that additional features should could be used to further lower the error.

6.7 Hyperparameter optimization

Next, we will consider optimization of the model hyperparameters, in order to use a better optimized model with a
selected feature set to minimize the model errors. To do this, we need to add the HyperOpt section to our input file,
as shown below. Here, we are optimzing our KernelRidge model, specifically its root_mean_squared_error, by using
our RepeatedKFold random leave-out cross-validation scheme. The param_names field provides the parameter names
to optimize. Here, we are optimizing the KernelRidge alpha and gamma parameters. Parameters must be delineated
with a semicolon. The param_values field provides a bound on the values to search over. Here, the minimum value is
-5, max is 5, 100 points are analyzed, and the numerical scaling is logarithmic, meaning it ranges from 10^-5 to 10^5.
If “lin” instead of “log” would have been specified, the scale would be linear with 100 values ranging from -5 to 5.

Example:

[HyperOpt]
[[GridSearch]]

estimator = KernelRidge
cv = RepeatedKFold
param_names = alpha ; gamma
param_values = -5 5 100 log float ; -5 5 100 log float
scoring = root_mean_squared_error

Let’s take a final look at the same full fit and RepeatedKFold random cross-validation tests for this run:

44 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Full-fit:

Random leave out cross-validation:

What we can see is, now that we down-selected features from more than 300 features in the previous run to just
20, along with optimizing the hyperparameters of our KernelRidge model, our fits are once again improved. The
hyperparameter optimization portion of this workflow outputs the hyperparameter values and cross-validation scores
for each step of, in this case, the GridSearch that we performed. All of this information is saved in the KerenlRidge.csv

6.7. Hyperparameter optimization 45

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

file in the GridSearch folder in the results directory tree. For this run, the optimal hyperparameters were alpha = 0.034
and gamma = 0.138

6.8 Random leave-out versus leave-out-group cross-validation

Here, we will use our selected feature set and optimized KernelRidge hyperparameters from the previous section to
do a new kind of cross-validation test: leave out group (LOG) CV. To do this, you will modify the alpha and gamma
values in the Models section, KernelRidge model in your input file. In addition, you can rename the selected.csv data
file to a new name, for example “example_data_selected.csv”, and use the path to this new data file for this new run,
as we will not be performing feature selection again (to save time).

We will compare these results to the results of LOG cross-validation with the random cross-validation. Our input data
file had a column called “Host element”. This is a natural grouping to use for this problem, as it is interesting to assess
our fits when training on a set of host elements and predicted the values of an entirely new host element set, without
having ever trained on that set. Modify your input file to match what is shown below. Note that we have commented
out the sections that we no longer want with the # symbol. You can either comment out the sections or remove them
entirely.

Example:

[GeneralSetup]
input_features = Auto
input_target = Reduced barrier (eV)
randomizer = False
metrics = Auto
input_other = Host element, Solute element, predict_Pt
input_grouping = Host element

#[DataCleaning]
cleaning_method = imputation
imputation_strategy = mean

#[FeatureGeneration]
[[Magpie]]
composition_feature = Solute element

[FeatureNormalization]
[[StandardScaler]]

#[FeatureSelection]
[[SequentialFeatureSelector]]
estimator = KernelRidge_select
k_features = 20

#[LearningCurve]
estimator = KernelRidge_learn
cv = RepeatedKFold_learn
scoring = root_mean_squared_error
n_features_to_select = 20
selector_name = SelectKBest

[Models]
[[KernelRidge]]

kernel = rbf
alpha = 0.034
gamma = 0.138

(continues on next page)

46 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

#[[KernelRidge_select]]
kernel = rbf
alpha = 1
gamma = 1
#[[KernelRidge_learn]]
kernel = rbf
alpha = 1
gamma = 1

[DataSplits]
[[NoSplit]]
[[RepeatedKFold]]

n_splits = 5
n_repeats = 2

#[[RepeatedKFold_learn]]
n_splits = 5
n_repeats = 2
[[LeaveOneGroupOut]]

grouping_column = Host element

#[HyperOpt]
[[GridSearch]]
estimator = KernelRidge
cv = RepeatedKFold
param_names = alpha ; gamma
param_values = -5 5 100 log ; -5 5 100 log
scoring = root_mean_squared_error

The main new additions to this input file is under the General Setup section, where the parameter grouping_feature
needs to be added, and the addition of LeaveOutGroup to the DataSplits section.

By doing this run, we can assess the model fits resulting from the random cross-validation and the LOG cross-
validation.

Random cross-validation:

6.8. Random leave-out versus leave-out-group cross-validation 47

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

LOG cross-validation:

We can immediately see the R-squared and errors are both worse for the LOG cross-validation test compared to the
random cross-validation test. This is likely because the LOG test is a more rigorous test of model extrapolation,
because the test scores in each case are for data for which host elements were never included in the training set. In
addition, a minor effect contributing to the reduced accuracy may be due to the fact that the model hyperparameters
were optimized by evaluating the root mean squared error for a random cross-validation test. If instead the parameters

48 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

were optimized using the LOG test, the resulting fits would likely be improved.

There are a couple additional plots that are usual output for a LOG test that are worth drawing attention to. The first
is a plot of each metric test value for each group. This enables one to quickly assess which groups perform better or
worse than others.

In addition, the parity plots for each split are now plotted with symbols denoting each group, which can help assess
clustering of groups and goodness of fit on a per-group basis.

Training on all groups except Ag:

6.8. Random leave-out versus leave-out-group cross-validation 49

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Testing on just Ag as the left-out host element:

50 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

6.9 Making predictions by importing a previously fit model

Here, we are going to import a previously fit model, and use it to predict the migration barriers for those data points
with Pt as the host element.

In your previous run, the LOG test split where the Pt host values were predicted is in the split_12 folder. The parity
plot for Pt test data should look like the below plot for your previous run:

Here, we are going to import the model that was fitted to all the groups except Pt, and use MAST-ML’s data validation
function as detailed above to obtain this same plot, but with using Pt as the validation data and the imported, previously
trained model. If one were to extend this data set to include, for example, U as a host element, any number of
previously trained models could be used to predict the migration barrier values for U. To import this model, save the
KernelRidge_split_12.pkl file from your previous run into the /models/ folder (it is as the the same level as the /tests/
folder in your main MAST-ML directory). To import this model into your next run, you can create a new field in the
Models section, as shown below:

Example:

[Models]
#[[KernelRidge]]
kernel = rbf
alpha = 0.034
gamma = 0.138
#[[KernelRidge_select]]
kernel = rbf
alpha = 1
gamma = 1
#[[KernelRidge_learn]]
kernel = rbf
alpha = 1
gamma = 1

(continues on next page)

6.9. Making predictions by importing a previously fit model 51

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

(continued from previous page)

[[ModelImport]]
model_path = models/KernelRidge_split_12.pkl

As we are only interested in assessing the fit on Pt for this example, we can change the DataSplits section to only have
the LOG test:

Example:

[DataSplits]
#[[NoSplit]]
[[RepeatedKFold]]

n_splits = 5
n_repeats = 2

#[[RepeatedKFold_learn]]
n_splits = 5
n_repeats = 2
[[LeaveOneGroupOut]]

grouping_column = Host element

From running this model and inspecting the test data parity plot in split_12 (the folder for Pt group, we obtain this
parity plot:

As a comparison, this plot is exactly the same as the above plot from the previous run. This is the expected result, and
demonstrates that the previously fit model was successfully imported and used to predict the Pt values. By inspecting
the other groups, for example split_1, which is for Ag, the R squared and errors indicate a better fit than our previous
run. This better fit is expected, as the model we saved from the previous run contained Ag in the training data, so these
predictions on Ag should be improved (note that this is defeats the purpose of the LOG test, but shows that the trained
model we imported is behaving as expected).

52 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

6.10 Predicting values for new, extrapolated data

As a final example, we are going to use our model to predict the migration barriers for those data points with Pt as the
host element. Your data file already has a column with the title “predict_Pt”, with values equal to 0 in all rows except
where Pt is the host, in which case the value is 1. In the GeneralSetup section of your input file, add the parameter
validation_columns, and have it equal to “predict_Pt”, as shown below. This will make it so that the data with Pt as
the host element will never be involved in the model training. This feature is a convenient way to isolate part of your
data, or some new part of your data, to only function as a validation data set. This way, whenever a model is trained
and tested on the remaining data, an additional prediction will also be calculated, which here is for the Pt host data.

Example:

[GeneralSetup]
input_features = Auto
input_target = Reduced barrier (eV)
randomizer = False
metrics = Auto
input_other = Host element, Solute element, predict_Pt
input_grouping = Host element
input_testdata = predict_Pt

For this test, let’s run both the random cross-validation and LOG test. As a reminder, we need to un-comment the
random cross-validation test in the DataSplits section:

Example:

[DataSplits]
#[[NoSplit]]
[[RepeatedKFold]]

n_splits = 5
n_repeats = 2

#[[RepeatedKFold_learn]]
n_splits = 5
n_repeats = 2
[[LeaveOneGroupOut]]

grouping_column = Host element

When running this test, you’ll notice there are fewer splits in the LOG test folder now. This is because Pt is only
treated as a final “validation” or “extrapolation” data set, and is never involved in the training or test set in any split.
For each split in the random and LOG CV tests, there is a “stats.txt” file which is written, which provides the average
train, test and prediction results. The prediction results are for the Pt validation data. Below are screenshots of the
stats.txt file for the random and LOG tests.

Random cross-validation:

6.10. Predicting values for new, extrapolated data 53

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

LOG cross-validation:

For the random cross-validation, the R-squared and error values are higher for the predict_Pt dataset compared to the
average of the testing datasets. This is to be expected, as Pt is never involved in model training. Further, we can
see that the predictions for predict_Pt are slightly worse in the case of the LOG cross-validation test compared to the
random cross-validation test. This also makes sense, as each training split of the LOG test tends to result in worse
predictive performance (i.e. worse model training), relative to the random cross-validation case, as discussed in the
above test when we compared the results of the random and LOG cross-validation tests.

This concludes the MAST-ML tutorial document! There are some other features of MAST-ML which were not ex-
plicitly discussed in this tutorial, such as forming data clusters. Consult the MAST-ML Input File section of this

54 Chapter 6. MAST-ML tutorial

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

documentation for a more in-depth overview of all the possible options for different MAST-ML runs.

6.10. Predicting values for new, extrapolated data 55

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

56 Chapter 6. MAST-ML tutorial

CHAPTER 7

Code Documentation: Metrics

7.1 mastml.metrics Module

This module contains constructors for different model score metrics. Most model metrics are obtained from scikit-
learn, while others are custom variations.

The full list of score functions in scikit-learn can be found at: http://scikit-learn.org/stable/modules/model_evaluation.
html

7.1.1 Functions

adjusted_r2_score(y_true, y_pred[, n_features]) Method that calculates the adjusted R^2 value
check_and_fetch_names(metric_names, . . .) Method that checks whether chosen metrics to evaluate

models are appropriate for user-specified models (e.g.
r2_score_fitted(y_true, y_pred) Method that calculates the R^2 value
r2_score_noint(y_true, y_pred) Method that calculates the R^2 value without fitting the

y-intercept
rmse_over_stdev(y_true, y_pred[, train_y]) Method that calculates the root mean squared error

(RMSE) of a set of data, divided by the standard de-
viation of the training data set.

root_mean_squared_error(y_true, y_pred) Method that calculates the root mean squared error
(RMSE)

adjusted_r2_score

mastml.metrics.adjusted_r2_score(y_true, y_pred, n_features=None)
Method that calculates the adjusted R^2 value

Args: y_true: (numpy array), array of true y data values y_pred: (numpy array), array of predicted y data values
n_features: (int), number of features used in the fit

Returns: (float): score of adjusted R^2

57

http://scikit-learn.org/stable/modules/model_evaluation.html
http://scikit-learn.org/stable/modules/model_evaluation.html

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

check_and_fetch_names

mastml.metrics.check_and_fetch_names(metric_names, is_classification)
Method that checks whether chosen metrics to evaluate models are appropriate for user-specified models (e.g.
classification vs. regression models)

Args: metric_names: (numpy array), array of true y data values is_classification: (bool), whether the task is a
classification task

Returns: functions (dict): dict containing the appropriate metric objects (e.g. classification vs. regression
metrics)

r2_score_fitted

mastml.metrics.r2_score_fitted(y_true, y_pred)
Method that calculates the R^2 value

Args: y_true: (numpy array), array of true y data values y_pred: (numpy array), array of predicted y data values

Returns: (float): score of R^2

r2_score_noint

mastml.metrics.r2_score_noint(y_true, y_pred)
Method that calculates the R^2 value without fitting the y-intercept

Args: y_true: (numpy array), array of true y data values y_pred: (numpy array), array of predicted y data values

Returns: (float): score of R^2 with no y-intercept

rmse_over_stdev

mastml.metrics.rmse_over_stdev(y_true, y_pred, train_y=None)
Method that calculates the root mean squared error (RMSE) of a set of data, divided by the standard deviation
of the training data set.

Args: y_true: (numpy array), array of true y data values y_pred: (numpy array), array of predicted y data values
train_y: (numpy array), array of training y data values

Returns: (float): score of RMSE divided by standard deviation of training data

root_mean_squared_error

mastml.metrics.root_mean_squared_error(y_true, y_pred)
Method that calculates the root mean squared error (RMSE)

Args: y_true: (numpy array), array of true y data values y_pred: (numpy array), array of predicted y data values

Returns: (float): score of RMSE

58 Chapter 7. Code Documentation: Metrics

CHAPTER 8

Code Documentation: Configuration file parser

8.1 mastml.conf_parser Module

The conf_parser module is used for handling, parsing, and checking MAST-ML input configuration files

8.1.1 Functions

check_models_mixed(model_names) Method used to check whether the user has mixed re-
gression and classification tasks

fix_types(maybe_list) Method that returns true datatype of values passed as
string or list of strings, parsed from configuration file

make_scorer(score_func, *[, . . .]) Make a scorer from a performance metric or loss func-
tion.

mybool(string) Method that converts a string equal to ‘True’ or ‘False’
into type bool

parse_conf_file(filepath[, from_dict]) Method that accepts the filepath of an input configura-
tion file and returns its parsed dictionary

fix_types

mastml.conf_parser.fix_types(maybe_list)
Method that returns true datatype of values passed as string or list of strings, parsed from configuration file

Args: maybe_list: (list, str), a list of strings or just a string whose datatype should be e.g. int or list of float

Returns: maybe_list: (list, bool, int, float): a list of items or other data type converted from string to correct
data type

59

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

mybool

mastml.conf_parser.mybool(string)
Method that converts a string equal to ‘True’ or ‘False’ into type bool

Args: string: (str), a string as ‘True’ or ‘False’

Returns: bool: (bool): bool as True or False

parse_conf_file

mastml.conf_parser.parse_conf_file(filepath, from_dict=False)
Method that accepts the filepath of an input configuration file and returns its parsed dictionary

Args: filepath: (str), path to config file, or a dict of config values directly

Returns: conf: (dict): dictionary parsed from config file

60 Chapter 8. Code Documentation: Configuration file parser

CHAPTER 9

Code Documentation: Data cleaner

9.1 mastml.data_cleaner Module

The data_cleaner module is used to clean missing or NaN values from pandas dataframes (e.g. removing NaN, impu-
tation, etc.)

9.1.1 Functions

columns_with_strings(df) Method that ascertains which columns in data contain
string entries

flag_outliers(df, conf_not_input_features, . . .) Method that scans values in each X feature matrix col-
umn and flags values that are larger than 3 standard de-
viations from the average of that column value.

imputation(df, strategy[, cols_to_leave_out]) Method that imputes values to the missing places based
on the median, mean, etc.

orth(A[, rcond]) Construct an orthonormal basis for the range of A using
SVD

ppca(df[, cols_to_leave_out]) Method that performs a recursive PCA routine to use
PCA of known columns to fill in missing values in par-
ticular column

remove(df, axis) Method that removes a full column or row of data values
if one column or row contains NaN or is blank

columns_with_strings

mastml.data_cleaner.columns_with_strings(df)
Method that ascertains which columns in data contain string entries

Args: df: (dataframe), pandas dataframe containing data

Returns: str_columns: (list), list containing indices of columns containing strings

61

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

flag_outliers

mastml.data_cleaner.flag_outliers(df, conf_not_input_features, savepath, n_stdevs=3)
Method that scans values in each X feature matrix column and flags values that are larger than 3 standard
deviations from the average of that column value. The index and column values of potentially problematic
points are listed and written to an output file.

Args: df: (dataframe), pandas dataframe containing data

Returns: None, just writes results to file

imputation

mastml.data_cleaner.imputation(df, strategy, cols_to_leave_out=None)
Method that imputes values to the missing places based on the median, mean, etc. of the data in the column

Args: df: (dataframe), pandas dataframe containing data strategy: (str), method of imputation, e.g. median,
mean, etc. cols_to_leave_out: (list), list of column indices to not include in imputation

Returns: df: (dataframe): dataframe with NaN or missing values resolved via imputation

ppca

mastml.data_cleaner.ppca(df, cols_to_leave_out=None)
Method that performs a recursive PCA routine to use PCA of known columns to fill in missing values in partic-
ular column

Args: df: (dataframe), pandas dataframe containing data cols_to_leave_out: (list), list of column indices to not
include in imputation

Returns: df: (dataframe): dataframe with NaN or missing values resolved via imputation

remove

mastml.data_cleaner.remove(df, axis)
Method that removes a full column or row of data values if one column or row contains NaN or is blank

Args: df: (dataframe), pandas dataframe containing data axis: (int), whether to remove rows (axis=0) or
columns (axis=1)

Returns: df: (dataframe): dataframe with NaN or missing values removed

9.1.2 Classes

PPCA() Class to perform probabilistic principal component
analysis (PPCA) to fill in missing data.

SimpleImputer(*[, missing_values, strategy, . . .]) Imputation transformer for completing missing values.

PPCA

class mastml.data_cleaner.PPCA
Bases: object

Class to perform probabilistic principal component analysis (PPCA) to fill in missing data.

62 Chapter 9. Code Documentation: Data cleaner

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

This PPCA routine was taken directly from https://github.com/allentran/pca-magic. Due to import errors, for
ease of use we have elected to copy the module here. This github repo was last accessed on 8/27/18. The
code comprising the PPCA class below was not developed by and is not owned by the University of Wisconsin-
Madison MAST-ML development team.

Methods Summary

fit(data[, d, tol, min_obs, verbose])
load(fpath)
save(fpath)
transform([data])

Methods Documentation

fit(data, d=None, tol=0.0001, min_obs=10, verbose=False)

load(fpath)

save(fpath)

transform(data=None)

9.1.3 Class Inheritance Diagram

PPCA

9.1. mastml.data_cleaner Module 63

https://github.com/allentran/pca-magic

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

64 Chapter 9. Code Documentation: Data cleaner

CHAPTER 10

Code Documentation: Data loader

10.1 mastml.data_loader Module

The data_loader module is used for importing data from user-specified csv or xlsx file to MAST-ML

10.1.1 Functions

load_data(file_path[, input_features, . . .]) Method that accepts the filepath of an input data file and
returns a full dataframe and parsed X and y dataframes

load_data

mastml.data_loader.load_data(file_path, input_features=None, input_target=None, in-
put_grouping=None, feature_blacklist=[])

Method that accepts the filepath of an input data file and returns a full dataframe and parsed X and y dataframes

Args: file_path: (str), path to data file

input_features: (str), column names to be used as input features (X data). If ‘Auto’, then takes all columns
that are not listed in target_feature or feature_blacklist fields.

target_feature: (str), column name for data to be fit to (y data).

grouping_feature: (str), column names used to group data in user-defined grouping scheme

Returns: df: (dataframe), full dataframe of the input X data (y data is removed)

X: (dataframe), dataframe containing only the X data from the data file

X_noinput: (dataframe), dataframe containing the columns of the original X data that are not used as input
features

X_grouped: (dataframe), dataframe containing the columns of hte original X data that correspond to a data
grouping scheme

65

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

y: (dataframe), dataframe containing only the y data from the data file

66 Chapter 10. Code Documentation: Data loader

CHAPTER 11

Code Documentation: Learning curve

11.1 mastml.learning_curve Module

This module contains methods to construct learning curves, which evaluate some cross-validation performance metric
(e.g. RMSE) as a function of amount of training data (i.e. a sample learning curve) or as a function of the number of
features used in the fitting (i.e. a feature learning curve).

11.1.1 Functions

f_regression(X, y, *[, center]) Univariate linear regression tests.
feature_learning_curve(X, y, estimator, cv,
. . .)

Method that calculates data used to plot a feature learn-
ing curve, e.g.

learning_curve(estimator, X, y, *[, groups, . . .]) Learning curve.
sample_learning_curve(X, y, estimator, cv, . . .) Method that calculates data used to plot a sample learn-

ing curve, e.g.

feature_learning_curve

mastml.learning_curve.feature_learning_curve(X, y, estimator, cv, scoring, selector_name,
savepath, n_features_to_select=None,
Xgroups=None)

Method that calculates data used to plot a feature learning curve, e.g. the RMSE of a cross-validation routine
using a specified model and a given number of features

Args: X: (numpy array), array of X data values

y: (numpy array), array of y data values

estimator: (scikit-learn model object), a scikit-learn model used for fitting

cv: (scikit-learn cross validation object), a scikit-learn cross validation object to construct train/test splits

scoring: (scikit-learn metric object), a scikit-learn metric to use as a scorer

67

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

selector_name: (str), name of a scikit-learn or MAST-ML feature selection routine

n_features_to_select: (int), total number of features to select, i.e. stopping criterion for number of features

Xgroups: (list), list of row indices corresponding to each group

Returns: train_sizes: (numpy array), array of fractions of training data used in learning curve

train_mean: (numpy array), array of means of training data scores for each number of features

test_mean: (numpy array), array of means of testing data scores for each number of features

train_stdev: (numpy array), array of standard deviations of training data scores for each number of features

test_stdev: (numpy array), array of standard deviations of testing data scores for each number of features

sample_learning_curve

mastml.learning_curve.sample_learning_curve(X, y, estimator, cv, scoring, Xgroups=None)
Method that calculates data used to plot a sample learning curve, e.g. the RMSE of a cross-validation routine
using a specified model and a given fraction of the total training data

Args: X: (numpy array), array of X data values

y: (numpy array), array of y data values

estimator: (scikit-learn model object), a scikit-learn model used for fitting

cv: (scikit-learn cross validation object), a scikit-learn cross validation object to construct train/test splits

scoring: (scikit-learn metric object), a scikit-learn metric to use as a scorer

Xgroups: (list), list of row indices corresponding to each group

Returns: train_sizes: (numpy array), array of fractions of training data used in learning curve

train_mean: (numpy array), array of means of training data scores for each training data fraction

test_mean: (numpy array), array of means of testing data scores for each training data fraction

train_stdev: (numpy array), array of standard deviations of training data scores for each training data
fraction

test_stdev: (numpy array), array of standard deviations of testing data scores for each training data fraction

68 Chapter 11. Code Documentation: Learning curve

CHAPTER 12

Code Documentation: Clusterers

12.1 mastml.legos.clusterers Module

The clusterers module is used for instantiating cluster algorithm objects from scikit-learn. More information is avail-
able at http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster

69

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

70 Chapter 12. Code Documentation: Clusterers

CHAPTER 13

Code Documentation: Data splitters

13.1 mastml.legos.data_splitters Module

The data_splitters module contains a collection of classes for generating (train_indices, test_indices) pairs from a
dataframe or a numpy array.

For more information and a list of scikit-learn splitter classes, see: http://scikit-learn.org/stable/modules/classes.
html#module-sklearn.model_selection

13.1.1 Classes

BaseEstimator Base class for all estimators in scikit-learn.
Bootstrap(n[, n_bootstraps, train_size, . . .]) # Note: Bootstrap taken directly from sklearn Github

(https://github.com/scikit-learn/scikit-learn/blob/0.
11.X/sklearn/cross_validation.py) # which was nec-
essary as it was later removed from more recent
sklearn releases Random sampling with replacement
cross-validation iterator Provides train/test indices to
split data in train test sets while resampling the input
n_bootstraps times: each time a new random split
of the data is performed and then samples are drawn
(with replacement) on each side of the split to build the
training and test sets.

JustEachGroup() Class to train the model on one group at a time and test
it on the rest of the data This class wraps scikit-learn’s
LeavePGroupsOut with P set to n-1.

LeaveCloseCompositionsOut([dist_threshold,
. . .])

Leave-P-out where you exclude materials with compo-
sitions close to those the test set

LeaveOutPercent([percent_leave_out, n_repeats]) Class to train the model using a certain percentage of
data as training data

Continued on next page

71

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
https://github.com/scikit-learn/scikit-learn/blob/0.11.X/sklearn/cross_validation.py
https://github.com/scikit-learn/scikit-learn/blob/0.11.X/sklearn/cross_validation.py

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Table 1 – continued from previous page
NearestNeighbors(*[, n_neighbors, radius, . . .]) Unsupervised learner for implementing neighbor

searches.
NoSplit() Class to just train the model on the training data and test

it on that same data.
SplittersUnion(splitters) Class to take the union of two separate splitting routines,

so that many splitting routines can be performed at once
TransformerMixin Mixin class for all transformers in scikit-learn.

Bootstrap

class mastml.legos.data_splitters.Bootstrap(n, n_bootstraps=3, train_size=0.5,
test_size=None, n_train=None,
n_test=None, random_state=0)

Bases: object

Note: Bootstrap taken directly from sklearn Github (https://github.com/scikit-learn/scikit-learn/blob/0.11.X/
sklearn/cross_validation.py) # which was necessary as it was later removed from more recent sklearn releases
Random sampling with replacement cross-validation iterator Provides train/test indices to split data in train test
sets while resampling the input n_bootstraps times: each time a new random split of the data is performed and
then samples are drawn (with replacement) on each side of the split to build the training and test sets. Note:
contrary to other cross-validation strategies, bootstrapping will allow some samples to occur several times in
each splits. However a sample that occurs in the train split will never occur in the test split and vice-versa. If
you want each sample to occur at most once you should probably use ShuffleSplit cross validation instead.

Args:

n [int] Total number of elements in the dataset.

n_bootstraps [int (default is 3)] Number of bootstrapping iterations

train_size [int or float (default is 0.5)] If int, number of samples to include in the training split (should be
smaller than the total number of samples passed in the dataset). If float, should be between 0.0 and
1.0 and represent the proportion of the dataset to include in the train split.

test_size [int or float or None (default is None)] If int, number of samples to include in the training set
(should be smaller than the total number of samples passed in the dataset). If float, should be between
0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If None, n_test is set
as the complement of n_train.

random_state [int or RandomState] Pseudo number generator state used for random sampling.

Attributes Summary

indices

Methods Summary

get_n_splits([X, y, groups])
split(X, y[, groups])

Attributes Documentation

indices = True

72 Chapter 13. Code Documentation: Data splitters

https://github.com/scikit-learn/scikit-learn/blob/0.11.X/sklearn/cross_validation.py
https://github.com/scikit-learn/scikit-learn/blob/0.11.X/sklearn/cross_validation.py

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Methods Documentation

get_n_splits(X=None, y=None, groups=None)

split(X, y, groups=None)

JustEachGroup

class mastml.legos.data_splitters.JustEachGroup
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class to train the model on one group at a time and test it on the rest of the data This class wraps scikit-learn’s
LeavePGroupsOut with P set to n-1. More information is available at: http://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.LeavePGroupsOut.html

Args: None (only object instance)

Methods: get_n_splits: method to calculate the number of splits to perform

Args: groups: (numpy array), array of group labels

Returns: (int), number of unique groups, indicating number of splits to perform

split: method to perform split into train indices and test indices

Args: X: (numpy array), array of X features y: (numpy array), array of y data groups: (numpy
array), array of group labels

Returns: (numpy array), array of train and test indices

Methods Summary

get_n_splits([X, y, groups])
split(X, y, groups)

Methods Documentation

get_n_splits(X=None, y=None, groups=None)

split(X, y, groups)

LeaveCloseCompositionsOut

class mastml.legos.data_splitters.LeaveCloseCompositionsOut(dist_threshold=0.1,
nn_kwargs=None)

Bases: sklearn.model_selection._split.BaseCrossValidator

Leave-P-out where you exclude materials with compositions close to those the test set

Computes the distance between the element fraction vectors. For example, the 𝐿2 distance between Al and Cu
is
√
2 and the 𝐿1 distance between Al and Al0.9Cu0.1 is 0.2.

Consequently, this splitter requires a list of compositions as the input to split rather than the features.

Args:

dist_threshold (float): Entries must be farther than this distance to be included in the training set

13.1. mastml.legos.data_splitters Module 73

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

nn_kwargs (dict): Keyword arguments for the scikit-learn NearestNeighbor class used to find near-
est points

Methods Summary

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

Methods Documentation

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the number of samples
and n_features is the number of features.

y [array-like of shape (n_samples,)] The target variable for supervised learning problems.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used while splitting
the dataset into train/test set.

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

LeaveOutPercent

class mastml.legos.data_splitters.LeaveOutPercent(percent_leave_out=0.2,
n_repeats=5)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class to train the model using a certain percentage of data as training data

Args: percent_leave_out (float): fraction of data to use in training (must be > 0 and < 1)

n_repeats (int): number of repeated splits to perform (must be >= 1)

Methods: get_n_splits: method to return the number of splits to perform

Args: groups: (numpy array), array of group labels

Returns: (int), number of unique groups, indicating number of splits to perform

split: method to perform split into train indices and test indices

Args: X: (numpy array), array of X features y: (numpy array), array of y data groups: (numpy
array), array of group labels

Returns: (numpy array), array of train and test indices

Methods Summary

74 Chapter 13. Code Documentation: Data splitters

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

get_n_splits([X, y, groups])
split(X, y[, groups])

Methods Documentation

get_n_splits(X=None, y=None, groups=None)

split(X, y, groups=None)

NoSplit

class mastml.legos.data_splitters.NoSplit
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class to just train the model on the training data and test it on that same data. Sometimes referred to as a “Full
fit” or a “Single fit”, equivalent to just plotting y vs. x.

Args: None (only object instance)

Methods: get_n_splits: method to calculate the number of splits to perform

Args: None

Returns: (int), always 1 as only a single split is performed

split: method to perform split into train indices and test indices

Args: X: (numpy array), array of X features

Returns: (numpy array), array of train and test indices (all data used as train and test for NoSplit)

Methods Summary

get_n_splits([X, y, groups])
split(X, y[, groups])

Methods Documentation

get_n_splits(X=None, y=None, groups=None)

split(X, y, groups=None)

SplittersUnion

class mastml.legos.data_splitters.SplittersUnion(splitters)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class to take the union of two separate splitting routines, so that many splitting routines can be performed at
once

Args: splitters: (list), a list of scikit-learn splitter objects

Methods: get_n_splits: method to calculate the number of splits to perform across all splitters

Args: X: (numpy array), array of X features y: (numpy array), array of y data groups: (numpy
array), array of group labels

13.1. mastml.legos.data_splitters Module 75

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Returns: (int), number of total splits to be conducted

split: method to perform split into train indices and test indices

Args: X: (numpy array), array of X features y: (numpy array), array of y data groups: (numpy
array), array of group labels

Returns: (numpy array), array of train and test indices

Methods Summary

get_n_splits(X, y[, groups])
split(X, y[, groups])

Methods Documentation

get_n_splits(X, y, groups=None)

split(X, y, groups=None)

13.1.2 Class Inheritance Diagram

BaseCrossValidator LeaveCloseCompositionsOut

BaseEstimator

JustEachGroup

LeaveOutPercent

NoSplit

SplittersUnion

Bootstrap

TransformerMixin

76 Chapter 13. Code Documentation: Data splitters

CHAPTER 14

Code Documentation: Utils

14.1 mastml.utils Module

The utils module contains a collection of miscellaneous methods and error handling used throughout MAST-ML

14.1.1 Functions

activate_logging(savepath, paths[, . . .]) Method to create MAST-ML logger file
ceil Return the ceiling of x as an Integral.
floor Return the floor of x as an Integral.
join(a, *p) Join two or more pathname components, inserting ‘/’ as

needed.
log(x, [base=math.e]) Return the logarithm of x to the given base.
log_header(paths, log) Method to create header for MAST-ML logger
nice_range(lower, upper) Method to create a range of values, including the speci-

fied start and end points, with nicely spaced intervals
verbosalize_logger(log, verbosity)

activate_logging

mastml.utils.activate_logging(savepath, paths, logger_name=’mastml’, to_screen=True,
to_file=True, verbosity=0)

Method to create MAST-ML logger file

Args:

savepath: (str), string specifying the save path

paths: (list), list containing strings of path locations for config file, data file, and results folder

logger_name: (str), name of logger file

to_screen: (bool), whether or not to write the log contents to the screen during a run

77

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

to_file: (bool), whether or not to write the log contents to a file in the savepath

verbosity: (int), controls the amount of output produced in the logger. Accepted values:

0 shows everything

-1 hides debug

-2 hides info (so no stdout except print)

-3 hides warning

-4 hides error

-5 hides all output

Returns:

None

log_header

mastml.utils.log_header(paths, log)
Method to create header for MAST-ML logger

Args:

paths: (list), list containing strings of path locations for config file, data file, and results folder

log: (logging object), a python log

Returns:

None

nice_range

mastml.utils.nice_range(lower, upper)
Method to create a range of values, including the specified start and end points, with nicely spaced intervals

Args:

lower: (float or int), lower bound of range to create

upper: (float or int), upper bound of range to create

Returns:

(list), list of numerical values in established range

verbosalize_logger

mastml.utils.verbosalize_logger(log, verbosity)

14.1.2 Classes

BetweenFilter(min_level, max_level) Class to aid in handling logger display levels
ConfError Class representing error in input configuration file

Continued on next page

78 Chapter 14. Code Documentation: Utils

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Table 2 – continued from previous page
FileNotFoundError Class representing error raised when a needed file can-

not be found
FiletypeError Class representing error raised when an improper file

extension is used
InvalidConfParameters Class representing error raised when you have invalid

input configuration file parameters
InvalidConfSection Class representing error raised when an invalid section

name is present in the input configuration file
InvalidConfSubSection Class representing error raised when an invalid subsec-

tion name is present in the input configuration file
InvalidModel Class representing error when model does not exist
InvalidValue Class representing error raised when an invalid value

has been used
MastError Base class for MAST-ML specific errors that should be

shown to the user
MissingColumnError Class representing error raised when your csv doesn’t

have the specified column
defaultdict defaultdict(default_factory[, . . .]) –> dict with default

factory

BetweenFilter

class mastml.utils.BetweenFilter(min_level, max_level)
Bases: object

Class to aid in handling logger display levels

Args:

min_level: (int), minimum verbosity level

max_level: (int), maximum verbosity level

Methods:

filter: Method to return logging level of logging.logRecord object

Args:

logRecord: (python logging.logRecord object)

Returns:

(int) logging level of logging.logRecord object, which is between the min and max
provided levels

Methods Summary

filter(logRecord)

Methods Documentation

filter(logRecord)

14.1. mastml.utils Module 79

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

ConfError

exception mastml.utils.ConfError
Class representing error in input configuration file

FileNotFoundError

exception mastml.utils.FileNotFoundError
Class representing error raised when a needed file cannot be found

FiletypeError

exception mastml.utils.FiletypeError
Class representing error raised when an improper file extension is used

InvalidConfParameters

exception mastml.utils.InvalidConfParameters
Class representing error raised when you have invalid input configuration file parameters

InvalidConfSection

exception mastml.utils.InvalidConfSection
Class representing error raised when an invalid section name is present in the input configuration file

InvalidConfSubSection

exception mastml.utils.InvalidConfSubSection
Class representing error raised when an invalid subsection name is present in the input configuration file

InvalidModel

exception mastml.utils.InvalidModel
Class representing error when model does not exist

InvalidValue

exception mastml.utils.InvalidValue
Class representing error raised when an invalid value has been used

MastError

exception mastml.utils.MastError
Base class for MAST-ML specific errors that should be shown to the user

80 Chapter 14. Code Documentation: Utils

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

MissingColumnError

exception mastml.utils.MissingColumnError
Class representing error raised when your csv doesn’t have the specified column

14.1.3 Class Inheritance Diagram

BetweenFilter

ConfError

MastError

FileNotFoundError

FiletypeError

InvalidConfParameters

InvalidConfSection

InvalidConfSubSection

InvalidModel

InvalidValue

MissingColumnError

14.1. mastml.utils Module 81

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

82 Chapter 14. Code Documentation: Utils

CHAPTER 15

Code Documentation: MAST-ML Driver

15.1 mastml.mastml_driver Module

Main MAST-ML module responsible for executing the workflow of a MAST-ML run

15.1.1 Functions

check_paths(conf_path, data_path, outdir) This method is responsible for error handling of the
user-specified paths for the configuration file, data file,
and output directory.

clone(estimator, *[, safe]) Constructs a new unfitted estimator with the same pa-
rameters.

deepcopy(x[, memo, _nil]) Deep copy operation on arbitrary Python objects.
get_commandline_args() This method is responsible for parsing and checking the

command-line execution of MAST-ML inputted by the
user.

join(a, *p) Join two or more pathname components, inserting ‘/’ as
needed.

main(conf_path, data_path[, outdir, verbosity]) This method is responsible for setting up the initial stage
of the MAST-ML run, such as parsing input directo-
ries to designate where data will be imported and results
saved to, as well as creation of the MAST-ML run log.

make_scorer(score_func, *[, . . .]) Make a scorer from a performance metric or loss func-
tion.

mastml_run(conf_path, data_path, outdir) This method is responsible for conducting the main
MAST-ML run workflow

reduce(function, sequence[, initial]) Apply a function of two arguments cumulatively to the
items of a sequence, from left to right, so as to reduce
the sequence to a single value.

83

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

check_paths

mastml.mastml_driver.check_paths(conf_path, data_path, outdir)
This method is responsible for error handling of the user-specified paths for the configuration file, data file, and
output directory.

Args:

conf_path: (str), the path supplied by the user which contains the input configuration file

data_path: (str), the path supplied by the user which contains the input data file (as CSV or XLSX)

outdir: (str), the path supplied by the user which determines where the output results are saved to

Returns:

conf_path: (str), the path supplied by the user which contains the input configuration file

data_path: (str), the path supplied by the user which contains the input data file (as CSV or XLSX)

outdir: (str), the path supplied by the user which determines where the output results are saved to

get_commandline_args

mastml.mastml_driver.get_commandline_args()
This method is responsible for parsing and checking the command-line execution of MAST-ML inputted by the
user.

Args:

None

Returns:

(str), the path supplied by the user which contains the input configuration file

(str), the path supplied by the user which contains the input data file (as CSV or XLSX)

(str), the path supplied by the user which determines where the output results are saved to

verbosity: (int), the verbosity level of the MAST-ML log, which determines the amount of informa-
tion writtent to the log.

main

mastml.mastml_driver.main(conf_path, data_path, outdir=’/home/docs/checkouts/readthedocs.org/user_builds/mastmldocs/checkouts/version_2.0/docs/source/results_mastml_run’,
verbosity=0)

This method is responsible for setting up the initial stage of the MAST-ML run, such as parsing input directories
to designate where data will be imported and results saved to, as well as creation of the MAST-ML run log.

Args:

conf_path: (str), the path supplied by the user which contains the input configuration file

data_path: (str), the path supplied by the user which contains the input data file (as CSV or XLSX)

outdir: (str), the path supplied by the user which determines where the output results are saved to

verbosity: (int), the verbosity level of the MAST-ML log, which determines the amount of informa-
tion written to the log.

Returns:

84 Chapter 15. Code Documentation: MAST-ML Driver

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

outdir: (str), the path supplied by the user which determines where the output results are saved to
(needed by other calls in MAST-ML)

mastml_run

mastml.mastml_driver.mastml_run(conf_path, data_path, outdir)
This method is responsible for conducting the main MAST-ML run workflow

Args:

conf_path: (str), the path supplied by the user which contains the input configuration file

data_path: (str), the path supplied by the user which contains the input data file (as CSV or XLSX)

outdir: (str), the path supplied by the user which determines where the output results are saved to

Returns:

None

15.1. mastml.mastml_driver Module 85

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

86 Chapter 15. Code Documentation: MAST-ML Driver

CHAPTER 16

Code Documentation: Plot Helper

16.1 mastml.plot_helper Module

This module contains a collection of functions which make plots (saved as png files) using matplotlib, generated from
some model fits and cross-validation evaluation within a MAST-ML run.

This module also contains a method to create python notebooks containing plotted data and the relevant source code
from this module, to enable the user to make their own modifications to the created plots in a straightforward way
(useful for tweaking plots for a presentation or publication).

16.1.1 Functions

auc(x, y) Compute Area Under the Curve (AUC) using the trape-
zoidal rule.

ceil Return the ceiling of x as an Integral.
confusion_matrix(y_true, y_pred, *[, . . .]) Compute confusion matrix to evaluate the accuracy of a

classification.
figaspect(arg) Calculate the width and height for a figure with a speci-

fied aspect ratio.
floor Return the floor of x as an Integral.
get_divisor(high, low) Method to obtain a sensible divisor based on range of

two values
get_histogram_bins(y_df) Method to obtain the number of bins to use when plot-

ting a histogram
ipynb_maker(plot_func) This method creates Jupyter Notebooks so user can

modify and regenerate the plots produced by MAST-
ML.

join(a, *p) Join two or more pathname components, inserting ‘/’ as
needed.

log(x, [base=math.e]) Return the logarithm of x to the given base.
Continued on next page

87

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Table 1 – continued from previous page
make_axes_locatable(axes)
make_axis_same(ax, max1, min1) Method to make the x and y ticks for each axis the same.
make_error_plots(run, path, . . . [, groups])
make_fig_ax([aspect_ratio, x_align, left]) Method to make matplotlib figure and axes objects.
make_fig_ax_square([aspect, aspect_ratio]) Method to make square shaped matplotlib figure and

axes objects.
make_train_test_plots(run, path, . . . [,
groups])

General plotting method used to execute sequence of
specific plots of train-test data analysis

mark_inset(parent_axes, inset_axes, loc1, . . .) Draw a box to mark the location of an area represented
by an inset axes.

nice_mean(ls) Method to return mean of a list or equivalent array with
NaN values

nice_names()
nice_range(lower, upper) Method to create a range of values, including the speci-

fied start and end points, with nicely spaced intervals
nice_std(ls) Method to return standard deviation of a list or equiva-

lent array with NaN values
parse_error_data(dataset_stdev, . . .)
plot_1d_heatmap(xs, heats, savepath[, . . .]) Method to plot a heatmap for values of a single variable;

used for plotting GridSearch results in hyperparameter
optimization.

plot_2d_heatmap(xs, ys, heats, savepath[, . . .]) Method to plot a heatmap for values of two variables;
used for plotting GridSearch results in hyperparameter
optimization.

plot_3d_heatmap(xs, ys, zs, heats, savepath) Method to plot a heatmap for values of three variables;
used for plotting GridSearch results in hyperparameter
optimization.

plot_average_cumulative_normalized_error(. . .)Method to plot the cumulative normalized residual er-
rors of a model prediction

plot_average_normalized_error(y_true,
. . . [, . . .])

Method to plot the normalized residual errors of a model
prediction

plot_best_worst_per_point(y_true, . . . [, . . .]) Method to create a parity plot (predicted vs.
plot_best_worst_split(y_true, best_run, . . .) Method to create a parity plot (predicted vs.
plot_confusion_matrix(y_true, y_pred, . . . [,
. . .])

Method used to generate a confusion matrix for a clas-
sification run.

plot_cumulative_normalized_error(y_true,
. . .)

Method to plot the cumulative normalized residual er-
rors of a model prediction

plot_keras_history(model_history, savepath,
. . .)
plot_learning_curve(train_sizes, train_mean,
. . .)

Method used to plot both data and feature learning
curves

plot_learning_curve_convergence(train_sizes,
. . .)

Method used to plot both the convergence of data and
feature learning curves as a function of amount of data
or features

plot_metric_vs_group(metric, groups, stats,
. . .)

Method to plot the value of a particular calculated met-
ric (e.g.

plot_metric_vs_group_size(metric, groups,
. . .)

Method to plot the value of a particular calculated met-
ric (e.g.

plot_normalized_error(y_true, y_pred, . . . [,
. . .])

Method to plot the normalized residual errors of a model
prediction

Continued on next page

88 Chapter 16. Code Documentation: Plot Helper

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Table 1 – continued from previous page
plot_precision_recall_curve(y_true,
y_pred, . . .)

Method to calculate and plot the precision-recall curve
for classification model results

plot_predicted_vs_true(train_quad, . . .) Method to create a parity plot (predicted vs.
plot_predicted_vs_true_bars(y_true, . . . [,
. . .])

Method to calculate parity plot (predicted vs.

plot_real_vs_predicted_error(y_true, . . .)
plot_residuals_histogram(y_true, y_pred,
. . .)

Method to calculate and plot the histogram of residuals
from regression model

plot_roc_curve(y_true, y_pred, savepath) Method to calculate and plot the receiver-operator char-
acteristic curve for classification model results

plot_scatter(x, y, savepath[, groups, . . .]) Method to create a general scatter plot
plot_stats(fig, stats[, x_align, y_align, . . .]) Method that prints stats onto the plot.
plot_target_histogram(y_df, savepath[, . . .]) Method to plot the histogram of true y values
precision_recall_curve(y_true, probas_pred,
*)

Compute precision-recall pairs for different probability
thresholds.

prediction_intervals(model, X, . . .) Method to calculate prediction intervals when using
Random Forest and Gaussian Process regression mod-
els.

r2_score(y_true, y_pred, *[, sample_weight, . . .]) R^2 (coefficient of determination) regression score
function.

recursive_max(arr) Method to recursively find the max value of an array of
iterables.

recursive_max_and_min(arr) Method to recursively return max and min of values or
iterables in array

recursive_min(arr) Method to recursively find the min value of an array of
iterables.

roc_curve(y_true, y_score, *[, pos_label, . . .]) Compute Receiver operating characteristic (ROC).
round_down(num, divisor) Method to return a rounded down number
round_up(num, divisor) Method to return a rounded up number
rounder(delta) Method to obtain number of decimal places to report on

plots
stat_to_string(name, value, nice_names) Method that converts a metric object into a string for

displaying on a plot
trim_array(arr_list) Method used to trim a set of arrays to make all arrays

the same shape
wraps(wrapped[, assigned, updated]) Decorator factory to apply update_wrapper() to a wrap-

per function
zoomed_inset_axes(parent_axes, zoom[, loc,
. . .])

Create an anchored inset axes by scaling a parent axes.

get_divisor

mastml.plot_helper.get_divisor(high, low)
Method to obtain a sensible divisor based on range of two values

Args:

high: (float), a max data value

low: (float), a min data value

Returns:

divisor: (float), a number used to make sensible axis ticks

16.1. mastml.plot_helper Module 89

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

get_histogram_bins

mastml.plot_helper.get_histogram_bins(y_df)
Method to obtain the number of bins to use when plotting a histogram

Args:

y_df: (pandas Series or numpy array), array of y data used to construct histogram

Returns:

num_bins: (int), the number of bins to use when plotting a histogram

ipynb_maker

mastml.plot_helper.ipynb_maker(plot_func)
This method creates Jupyter Notebooks so user can modify and regenerate the plots produced by MAST-ML.

Args:

plot_func: (plot_helper method), a plotting method contained in plot_helper.py which contains the

@ipynb_maker decorator

Returns:

(plot_helper method), the same plot_func as used as input, but after having written the Jupyter note-
book with source code to create plot

make_axis_same

mastml.plot_helper.make_axis_same(ax, max1, min1)
Method to make the x and y ticks for each axis the same. Useful for parity plots

Args:

ax: (matplotlib axis object), a matplotlib axes object

max1: (float), the maximum value of a particular axis

min1: (float), the minimum value of a particular axis

Returns:

None

make_error_plots

mastml.plot_helper.make_error_plots(run, path, is_classification, label, model, train_X, test_X,
rf_error_method, rf_error_percentile, is_validation, vali-
dation_column_name, validation_X, groups=None)

make_fig_ax

mastml.plot_helper.make_fig_ax(aspect_ratio=0.5, x_align=0.65, left=0.1)
Method to make matplotlib figure and axes objects. Using Object Oriented interface from https://matplotlib.org/
gallery/api/agg_oo_sgskip.html

Args:

90 Chapter 16. Code Documentation: Plot Helper

https://matplotlib.org/gallery/api/agg_oo_sgskip.html
https://matplotlib.org/gallery/api/agg_oo_sgskip.html

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

aspect_ratio: (float), aspect ratio for figure and axes creation

x_align: (float), x position to draw edge of figure. Needed so can display stats alongside plot

left: (float), the leftmost position to draw edge of figure

Returns:

fig: (matplotlib fig object), a matplotlib figure object with the specified aspect ratio

ax: (matplotlib ax object), a matplotlib axes object with the specified aspect ratio

make_fig_ax_square

mastml.plot_helper.make_fig_ax_square(aspect=’equal’, aspect_ratio=1)
Method to make square shaped matplotlib figure and axes objects. Using Object Oriented interface from

https://matplotlib.org/gallery/api/agg_oo_sgskip.html

Args:

aspect: (str), ‘equal’ denotes x and y aspect will be equal (i.e. square)

aspect_ratio: (float), aspect ratio for figure and axes creation

Returns:

fig: (matplotlib fig object), a matplotlib figure object with the specified aspect ratio

ax: (matplotlib ax object), a matplotlib axes object with the specified aspect ratio

make_train_test_plots

mastml.plot_helper.make_train_test_plots(run, path, is_classification, label, model, train_X,
test_X, groups=None)

General plotting method used to execute sequence of specific plots of train-test data analysis

Args:

run: (dict), a particular split_result from masml_driver

path: (str), path to save the generated plots and analysis of split_result designated in ‘run’

is_classification: (bool), whether or not the analysis is a classification task

label: (str), name of the y data variable being fit

model: (scikit-learn model object), a scikit-learn model/estimator

train_X: (numpy array), array of X features used in training

test_X: (numpy array), array of X features used in testing

groups: (numpy array), array of group names

Returns:

None

16.1. mastml.plot_helper Module 91

https://matplotlib.org/gallery/api/agg_oo_sgskip.html

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

nice_mean

mastml.plot_helper.nice_mean(ls)
Method to return mean of a list or equivalent array with NaN values

Args:

ls: (list), list of values

Returns:

(numpy array), array containing mean of list of values or NaN if list has no values

nice_names

mastml.plot_helper.nice_names()

nice_range

mastml.plot_helper.nice_range(lower, upper)
Method to create a range of values, including the specified start and end points, with nicely spaced intervals

Args:

lower: (float or int), lower bound of range to create

upper: (float or int), upper bound of range to create

Returns:

(list), list of numerical values in established range

nice_std

mastml.plot_helper.nice_std(ls)
Method to return standard deviation of a list or equivalent array with NaN values

Args:

ls: (list), list of values

Returns:

(numpy array), array containing standard deviation of list of values or NaN if list has no values

parse_error_data

mastml.plot_helper.parse_error_data(dataset_stdev, path_to_test, data_test_type)

plot_1d_heatmap

mastml.plot_helper.plot_1d_heatmap(xs, heats, savepath, xlabel=’x’, heatlabel=’heats’)
Method to plot a heatmap for values of a single variable; used for plotting GridSearch results in hyperparameter
optimization.

Args:

92 Chapter 16. Code Documentation: Plot Helper

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

xs: (numpy array), array of first variable values to plot heatmap against

heats: (numpy array), array of heat values to plot

savepath: (str), path to save the 1D heatmap to

xlabel: (str), the x-axis label

heatlabel: (str), the heat value axis label

plot_2d_heatmap

mastml.plot_helper.plot_2d_heatmap(xs, ys, heats, savepath, xlabel=’x’, ylabel=’y’, heatla-
bel=’heat’)

Method to plot a heatmap for values of two variables; used for plotting GridSearch results in hyperparameter
optimization.

Args:

xs: (numpy array), array of first variable values to plot heatmap against

ys: (numpy array), array of second variable values to plot heatmap against

heats: (numpy array), array of heat values to plot

savepath: (str), path to save the 2D heatmap to

xlabel: (str), the x-axis label

ylabel: (str), the y-axis label

heatlabel: (str), the heat value axis label

plot_3d_heatmap

mastml.plot_helper.plot_3d_heatmap(xs, ys, zs, heats, savepath, xlabel=’x’, ylabel=’y’, zla-
bel=’z’, heatlabel=’heat’)

Method to plot a heatmap for values of three variables; used for plotting GridSearch results in hyperparameter
optimization.

Args:

xs: (numpy array), array of first variable values to plot heatmap against

ys: (numpy array), array of second variable values to plot heatmap against

zs: (numpy array), array of third variable values to plot heatmap against

heats: (numpy array), array of heat values to plot

savepath: (str), path to save the 2D heatmap to

xlabel: (str), the x-axis label

ylabel: (str), the y-axis label

zlabel: (str), the z-axis label

heatlabel: (str), the heat value axis label

16.1. mastml.plot_helper Module 93

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

plot_average_cumulative_normalized_error

mastml.plot_helper.plot_average_cumulative_normalized_error(y_true, y_pred,
savepath,
has_model_errors,
err_avg=None)

Method to plot the cumulative normalized residual errors of a model prediction

Args:

y_true: (numpy array), array containing the true y data values

y_pred: (numpy array), array containing the predicted y data values

savepath: (str), path to save the plotted cumulative normalized error plot

model: (scikit-learn model/estimator object), a scikit-learn model object

X: (numpy array), array of X features

avg_stats: (dict), dict of calculated average metrics over all CV splits

Returns:

None

plot_average_normalized_error

mastml.plot_helper.plot_average_normalized_error(y_true, y_pred, savepath,
has_model_errors, err_avg=None)

Method to plot the normalized residual errors of a model prediction

Args:

y_true: (numpy array), array containing the true y data values

y_pred: (numpy array), array containing the predicted y data values

savepath: (str), path to save the plotted normalized error plot

model: (scikit-learn model/estimator object), a scikit-learn model object

X: (numpy array), array of X features

avg_stats: (dict), dict of calculated average metrics over all CV splits

Returns:

None

plot_best_worst_per_point

mastml.plot_helper.plot_best_worst_per_point(y_true, y_pred_list, savepath, metrics_dict,
avg_stats, title=’best worst per point’, la-
bel=’target_value’)

Method to create a parity plot (predicted vs. true values) of the set of best and worst CV scores for each

individual data point.

Args:

94 Chapter 16. Code Documentation: Plot Helper

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

y_true: (numpy array), array of true y data

y_pred_list: (list), list of numpy arrays containing predicted y data for each CV split

savepath: (str), path to save plots to

metrics_dict: (dict), dict of scikit-learn metric objects to calculate score of predicted vs. true values

avg_stats: (dict), dict of calculated average metrics over all CV splits

title: (str), title of the best_worst_per_point plot

label: (str), label used for axis labeling

Returns:

None

plot_best_worst_split

mastml.plot_helper.plot_best_worst_split(y_true, best_run, worst_run, savepath, title=’Best
Worst Overlay’, label=’target_value’)

Method to create a parity plot (predicted vs. true values) of just the best scoring and worst scoring CV splits

Args:

y_true: (numpy array), array of true y data

best_run: (dict), the best scoring split_result from mastml_driver

worst_run: (dict), the worst scoring split_result from mastml_driver

savepath: (str), path to save plots to

title: (str), title of the best_worst_split plot

label: (str), label used for axis labeling

Returns:

None

plot_confusion_matrix

mastml.plot_helper.plot_confusion_matrix(y_true, y_pred, savepath, stats, nor-
malize=False, title=’Confusion matrix’,
cmap=<matplotlib.colors.LinearSegmentedColormap
object>)

Method used to generate a confusion matrix for a classification run. Additional information can be found at:
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

Args:

y_true: (numpy array), array containing the true y data values

y_pred: (numpy array), array containing the predicted y data values

savepath: (str), path to save the plotted confusion matrix

stats: (dict), dict of training or testing statistics for a particular run

normalize: (bool), whether or not to normalize data output as truncated float vs. double

title: (str), title of the confusion matrix plot

16.1. mastml.plot_helper Module 95

http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

cmap: (matplotlib colormap), the color map to use for confusion matrix plotting

Returns:

None

plot_cumulative_normalized_error

mastml.plot_helper.plot_cumulative_normalized_error(y_true, y_pred, savepath,
model, rf_error_method,
rf_error_percentile, X=None,
Xtrain=None, Xtest=None)

Method to plot the cumulative normalized residual errors of a model prediction

Args:

y_true: (numpy array), array containing the true y data values

y_pred: (numpy array), array containing the predicted y data values

savepath: (str), path to save the plotted cumulative normalized error plot

model: (scikit-learn model/estimator object), a scikit-learn model object

X: (numpy array), array of X features

avg_stats: (dict), dict of calculated average metrics over all CV splits

Returns:

None

plot_keras_history

mastml.plot_helper.plot_keras_history(model_history, savepath, plot_type)

plot_learning_curve

mastml.plot_helper.plot_learning_curve(train_sizes, train_mean, test_mean, train_stdev,
test_stdev, score_name, learning_curve_type,
savepath=’data_learning_curve’)

Method used to plot both data and feature learning curves

Args:

train_sizes: (numpy array), array of x-axis values, such as fraction of data used or number of features

train_mean: (numpy array), array of training data mean values, averaged over some type/number of
CV splits

test_mean: (numpy array), array of test data mean values, averaged over some type/number of CV
splits

train_stdev: (numpy array), array of training data standard deviation values, from some type/number
of CV splits

test_stdev: (numpy array), array of test data standard deviation values, from some type/number of
CV splits

score_name: (str), type of score metric for learning curve plotting; used in y-axis label

96 Chapter 16. Code Documentation: Plot Helper

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

learning_curve_type: (str), type of learning curve employed: ‘sample_learning_curve’ or ‘fea-
ture_learning_curve’

savepath: (str), path to save the plotted learning curve to

Returns:

None

plot_learning_curve_convergence

mastml.plot_helper.plot_learning_curve_convergence(train_sizes, test_mean,
score_name, learning_curve_type,
savepath)

Method used to plot both the convergence of data and feature learning curves as a function of amount of data or
features

used, respectively.

Args:

train_sizes: (numpy array), array of x-axis values, such as fraction of data used or number of features

test_mean: (numpy array), array of test data mean values, averaged over some type/number of CV
splits

score_name: (str), type of score metric for learning curve plotting; used in y-axis label

learning_curve_type: (str), type of learning curve employed: ‘sample_learning_curve’ or ‘fea-
ture_learning_curve’

savepath: (str), path to save the plotted convergence learning curve to

Returns:

None

plot_metric_vs_group

mastml.plot_helper.plot_metric_vs_group(metric, groups, stats, avg_stats, savepath)
Method to plot the value of a particular calculated metric (e.g. RMSE, R^2, etc) for each data group

Args:

metric: (str), name of a calculation metric

groups: (numpy array), array of group names

stats: (dict), dict of training or testing statistics for a particular run

avg_stats: (dict), dict of calculated average metrics over all CV splits

savepath: (str), path to save plots to

Returns:

None

16.1. mastml.plot_helper Module 97

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

plot_metric_vs_group_size

mastml.plot_helper.plot_metric_vs_group_size(metric, groups, stats, avg_stats, savepath)
Method to plot the value of a particular calculated metric (e.g. RMSE, R^2, etc) as a function of the size of each
group.

Args:

metric: (str), name of a calculation metric

groups: (numpy array), array of group names

stats: (dict), dict of training or testing statistics for a particular run

avg_stats: (dict), dict of calculated average metrics over all CV splits

savepath: (str), path to save plots to

Returns:

None

plot_normalized_error

mastml.plot_helper.plot_normalized_error(y_true, y_pred, savepath, model,
rf_error_method, rf_error_percentile, X=None,
Xtrain=None, Xtest=None)

Method to plot the normalized residual errors of a model prediction

Args:

y_true: (numpy array), array containing the true y data values

y_pred: (numpy array), array containing the predicted y data values

savepath: (str), path to save the plotted normalized error plot

model: (scikit-learn model/estimator object), a scikit-learn model object

X: (numpy array), array of X features

avg_stats: (dict), dict of calculated average metrics over all CV splits

Returns:

None

plot_precision_recall_curve

mastml.plot_helper.plot_precision_recall_curve(y_true, y_pred, savepath)
Method to calculate and plot the precision-recall curve for classification model results

Args:

y_true: (numpy array), array of true y data values

y_pred: (numpy array), array of predicted y data values

savepath: (str), path to save the plotted precision-recall curve

Returns:

None

98 Chapter 16. Code Documentation: Plot Helper

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

plot_predicted_vs_true

mastml.plot_helper.plot_predicted_vs_true(train_quad, test_quad, outdir, label)
Method to create a parity plot (predicted vs. true values)

Args:

train_quad: (tuple), tuple containing 4 numpy arrays: true training y data, predicted training y data,

training metric data, and groups used in training

test_quad: (tuple), tuple containing 4 numpy arrays: true test y data, predicted test y data,

testing metric data, and groups used in testing

outdir: (str), path to save plots to

label: (str), label used for axis labeling

Returns:

None

plot_predicted_vs_true_bars

mastml.plot_helper.plot_predicted_vs_true_bars(y_true, y_pred_list, avg_stats, savepath,
title=’best worst with bars’, la-
bel=’target_value’, groups=None)

Method to calculate parity plot (predicted vs. true) of average predictions, averaged over all CV splits, with
error

bars on each point corresponding to the standard deviation of the predicted values over all CV splits.

Args:

y_true: (numpy array), array of true y data

y_pred_list: (list), list of numpy arrays containing predicted y data for each CV split

avg_stats: (dict), dict of calculated average metrics over all CV splits

savepath: (str), path to save plots to

title: (str), title of the best_worst_per_point plot

label: (str), label used for axis labeling

Returns:

None

plot_real_vs_predicted_error

mastml.plot_helper.plot_real_vs_predicted_error(y_true, savepath, model,
data_test_type)

plot_residuals_histogram

mastml.plot_helper.plot_residuals_histogram(y_true, y_pred, savepath, stats,
title=’residuals histogram’, la-
bel=’residuals’)

Method to calculate and plot the histogram of residuals from regression model

16.1. mastml.plot_helper Module 99

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Args:

y_true: (numpy array), array of true y data values

y_pred: (numpy array), array of predicted y data values

savepath: (str), path to save the plotted precision-recall curve

stats: (dict), dict of training or testing statistics for a particular run

title: (str), title of residuals histogram

label: (str), label used for axis labeling

Returns:

None

plot_roc_curve

mastml.plot_helper.plot_roc_curve(y_true, y_pred, savepath)
Method to calculate and plot the receiver-operator characteristic curve for classification model results

Args:

y_true: (numpy array), array of true y data values

y_pred: (numpy array), array of predicted y data values

savepath: (str), path to save the plotted ROC curve

Returns:

None

plot_scatter

mastml.plot_helper.plot_scatter(x, y, savepath, groups=None, xlabel=’x’, label=’target data’)
Method to create a general scatter plot

Args:

x: (numpy array), array of x data

y: (numpy array), array of y data

savepath: (str), path to save plots to

groups: (list), list of group labels

xlabel: (str), label used for x-axis labeling

label: (str), label used for y-axis labeling

Returns:

None

plot_stats

mastml.plot_helper.plot_stats(fig, stats, x_align=0.65, y_align=0.9, font_dict={}, fontsize=14)
Method that prints stats onto the plot. Goes off screen if they are too long or too many in number.

Args:

100 Chapter 16. Code Documentation: Plot Helper

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

fig: (matplotlib figure object), a matplotlib figure object

stats: (dict), dict of statistics to be included with a plot

x_align: (float), float denoting x position of where to align display of stats on a plot

y_align: (float), float denoting y position of where to align display of stats on a plot

font_dict: (dict), dict of matplotlib font options to alter display of stats on plot

fontsize: (int), the fontsize of stats to display on plot

Returns:

None

plot_target_histogram

mastml.plot_helper.plot_target_histogram(y_df, savepath, title=’target histogram’, la-
bel=’target values’)

Method to plot the histogram of true y values

Args:

y_df: (pandas dataframe), dataframe of true y data values

savepath: (str), path to save the plotted precision-recall curve

title: (str), title of residuals histogram

label: (str), label used for axis labeling

Returns:

None

prediction_intervals

mastml.plot_helper.prediction_intervals(model, X, rf_error_method, rf_error_percentile,
Xtrain, Xtest)

Method to calculate prediction intervals when using Random Forest and Gaussian Process regression models.

Prediction intervals for random forest adapted from https://blog.datadive.net/
prediction-intervals-for-random-forests/

Args:

model: (scikit-learn model/estimator object), a scikit-learn model object

X: (numpy array), array of X features

method: (str), type of error bar to formulate (e.g. “stdev” is standard deviation of predicted errors,
“confint” is error bar as confidence interval

percentile: (int), percentile for which to form error bars

Returns:

err_up: (list), list of upper bounds of error bars for each data point

err_down: (list), list of lower bounds of error bars for each data point

16.1. mastml.plot_helper Module 101

https://blog.datadive.net/prediction-intervals-for-random-forests/
https://blog.datadive.net/prediction-intervals-for-random-forests/

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

recursive_max

mastml.plot_helper.recursive_max(arr)
Method to recursively find the max value of an array of iterables.

Credit: https://www.linkedin.com/pulse/ask-recursion-during-coding-interviews-identify-good-talent-veteanu/

Args:

arr: (numpy array), an array of values or iterables

Returns:

(float), max value in arr

recursive_max_and_min

mastml.plot_helper.recursive_max_and_min(arr)
Method to recursively return max and min of values or iterables in array

Args:

arr: (numpy array), an array of values or iterables

Returns:

(tuple), tuple containing max and min of arr

recursive_min

mastml.plot_helper.recursive_min(arr)
Method to recursively find the min value of an array of iterables.

Credit: https://www.linkedin.com/pulse/ask-recursion-during-coding-interviews-identify-good-talent-veteanu/

Args:

arr: (numpy array), an array of values or iterables

Returns:

(float), min value in arr

round_down

mastml.plot_helper.round_down(num, divisor)
Method to return a rounded down number

Args:

num: (float), a number to round down

divisor: (int), divisor to denote how to round down

Returns:

(float), the rounded-down number

102 Chapter 16. Code Documentation: Plot Helper

https://www.linkedin.com/pulse/ask-recursion-during-coding-interviews-identify-good-talent-veteanu/
https://www.linkedin.com/pulse/ask-recursion-during-coding-interviews-identify-good-talent-veteanu/

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

round_up

mastml.plot_helper.round_up(num, divisor)
Method to return a rounded up number

Args:

num: (float), a number to round up

divisor: (int), divisor to denote how to round up

Returns:

(float), the rounded-up number

rounder

mastml.plot_helper.rounder(delta)
Method to obtain number of decimal places to report on plots

Args:

delta: (float), a float representing the change in two y values on a plot, used to obtain the plot axis
spacing size

Return:

(int), an integer denoting the number of decimal places to use

stat_to_string

mastml.plot_helper.stat_to_string(name, value, nice_names)
Method that converts a metric object into a string for displaying on a plot

Args:

name: (str), long name of a stat metric or quantity

value: (float), value of the metric or quantity

Return:

(str), a string of the metric name, adjusted to look nicer for inclusion on a plot

trim_array

mastml.plot_helper.trim_array(arr_list)
Method used to trim a set of arrays to make all arrays the same shape

Args:

arr_list: (list), list of numpy arrays, where arrays are different sizes

Returns:

arr_list: (), list of trimmed numpy arrays, where arrays are same size

16.1. mastml.plot_helper Module 103

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

104 Chapter 16. Code Documentation: Plot Helper

CHAPTER 17

Code Documentation: HTML Helper

17.1 mastml.html_helper Module

Module for generating an HTML file, called index.html, which contains an overview of the key data and plots from a
MAST-ML run. Images of cross-validation parity plots, data histograms, data statistics, and links to the relevant files
are all provided.

17.1.1 Functions

attr(*args, **kwargs) Set attributes on the current active tag context
get_current([default]) get the current tag being used as a with context or deco-

rated function.
gmtime([seconds]) tm_sec, tm_wday, tm_yday, tm_isdst)
is_test_image(path) Method used to assess whether an image is for testing

data
is_train_image(path) Method used to assess whether an image is for training

data
join(a, *p) Join two or more pathname components, inserting ‘/’ as

needed.
make_html(outdir) Method used to create the main index.html file
make_image(src[, title]) Method used to generate and show an image of a fixed

width.
make_link(href) Method used to generate a link to a particular file cre-

ated from a MAST-ML run.
relpath(path[, start]) Return a relative version of a path
show_combo(combo_dir, outdir) Method used to collect combinations of data analysis

(e.g.
Continued on next page

105

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Table 1 – continued from previous page
simple_section(filepath, outdir) Method used to create a section name for a particular

analysis combination that will be displayed in the in-
dex.html file.

strftime(format[, tuple]) Convert a time tuple to a string according to a format
specification.

is_test_image

mastml.html_helper.is_test_image(path)
Method used to assess whether an image is for testing data

Args:

path: (str), source path of the image to be displayed

Returns:

(bool), True if path is an image (.png) and is for testing data (has ‘test’ in path)

is_train_image

mastml.html_helper.is_train_image(path)
Method used to assess whether an image is for training data

Args:

path: (str), source path of the image to be displayed

Returns:

(bool), True if path is an image (.png) and is for training data (has ‘train’ in path)

make_html

mastml.html_helper.make_html(outdir)
Method used to create the main index.html file

Args:

outdir: (str), user-specified output path which designates where all results of MAST-ML run are
written

Returns:

None

make_image

mastml.html_helper.make_image(src, title=None)
Method used to generate and show an image of a fixed width. The image will be displayed in the appropriate
section of the index.html file

Args:

src: (str), source path of the image to be displayed

title: (str), title for the image

Returns:

106 Chapter 17. Code Documentation: HTML Helper

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

None

make_link

mastml.html_helper.make_link(href)
Method used to generate a link to a particular file created from a MAST-ML run. The link will be displayed
next to the appropriate data or image in the index.html file

Args:

href: (str), filename to generate link for

Returns:

(dominate.tags html_tag object), hyperlink to filename

show_combo

mastml.html_helper.show_combo(combo_dir, outdir)
Method used to collect combinations of data analysis (e.g. parity plots of train and test data in a CV split) and
required file paths and display them in the output index.html file.

Args:

combo_dir: (str), path containing the relevant data to combine as output in the index.html file

outdir: (str), user-specified output path which designates where all results of MAST-ML run are
written

Returns:

None

simple_section

mastml.html_helper.simple_section(filepath, outdir)
Method used to create a section name for a particular analysis combination that will be displayed in the in-
dex.html file.

Args:

filepath: (str), path containing the relevant data to combine as output in the index.html file

outdir: (str), user-specified output path which designates where all results of MAST-ML run are
written

Returns:

None

17.1. mastml.html_helper Module 107

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

108 Chapter 17. Code Documentation: HTML Helper

CHAPTER 18

Code Documentation: Feature Selectors

18.1 mastml.legos.feature_selectors Module

This module contains a collection of classes and methods for selecting features, and interfaces with scikit-learn feature
selectors. More information on scikit-learn feature selectors is available at:

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection

18.1.1 Functions

cov(m[, y, rowvar, bias, ddof, fweights, . . .]) Estimate a covariance matrix, given data and weights.
dataframify_new_column_names(transform,
name)

Method which transforms output of scikit-learn feature
selectors to dataframe, and adds column names

dataframify_selector(transform) Method which transforms output of scikit-learn feature
selectors from array to dataframe.

fitify_just_use_values(fit) Method which enables a feature selector fit method to
operate on dataframes

pearsonr(x, y) Pearson correlation coefficient and p-value for testing
non-correlation.

root_mean_squared_error(y_true, y_pred) Method that calculates the root mean squared error
(RMSE)

wraps(wrapped[, assigned, updated]) Decorator factory to apply update_wrapper() to a wrap-
per function

dataframify_new_column_names

mastml.legos.feature_selectors.dataframify_new_column_names(transform, name)
Method which transforms output of scikit-learn feature selectors to dataframe, and adds column names

Args:

transform: (function), a scikit-learn feature selector that has a transform method

109

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

name: (str), name of the feature selector

Returns:

new_transform: (function), an amended version of the transform method that returns a dataframe

dataframify_selector

mastml.legos.feature_selectors.dataframify_selector(transform)
Method which transforms output of scikit-learn feature selectors from array to dataframe. Enables preservation
of column names.

Args:

transform: (function), a scikit-learn feature selector that has a transform method

Returns:

new_transform: (function), an amended version of the transform method that returns a dataframe

fitify_just_use_values

mastml.legos.feature_selectors.fitify_just_use_values(fit)
Method which enables a feature selector fit method to operate on dataframes

Args:

fit: (function), a scikit-learn feature selector object with a fit method

Returns:

new_fit: (function), an amended version of the fit method that uses dataframes as input

18.1.2 Classes

BaseEstimator Base class for all estimators in scikit-learn.
EnsembleModelFeatureSelector(estimator,
. . .)

Class custom-written for MAST-ML to conduct selec-
tion of features with ensemble model feature impor-
tances

MASTMLFeatureSelector(estimator, . . . [, . . .]) Class custom-written for MAST-ML to conduct forward
selection of features with flexible model and cv scheme

PCA([n_components, copy, whiten, . . .]) Principal component analysis (PCA).
PearsonSelector(threshold_between_features,
. . .)

Class custom-written for MAST-ML to conduct selec-
tion of features based on Pearson correlation coefficent
between features and target.

SequentialFeatureSelector(estimator[, . . .]) Sequential Feature Selection for Classification and Re-
gression.

TransformerMixin Mixin class for all transformers in scikit-learn.
constructor alias of sklearn.feature_selection.

_variance_threshold.VarianceThreshold

110 Chapter 18. Code Documentation: Feature Selectors

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

EnsembleModelFeatureSelector

class mastml.legos.feature_selectors.EnsembleModelFeatureSelector(estimator,
k_features)

Bases: object

Class custom-written for MAST-ML to conduct selection of features with ensemble model feature importances

Args:

estimator: (scikit-learn model/estimator object), a scikit-learn model/estimator

k_features: (int), the number of features to select

Methods:

fit: performs feature selection

Args:

X: (dataframe), dataframe of X features

y: (dataframe), dataframe of y data

Returns:

None

transform: performs the transform to generate output of only selected features

Args:

X: (dataframe), dataframe of X features

Returns:

dataframe: (dataframe), dataframe of selected X features

Methods Summary

fit(X[, y])
transform(X)

Methods Documentation

fit(X, y=None)

transform(X)

MASTMLFeatureSelector

class mastml.legos.feature_selectors.MASTMLFeatureSelector(estimator,
n_features_to_select,
cv, manu-
ally_selected_features=[])

Bases: object

Class custom-written for MAST-ML to conduct forward selection of features with flexible model and cv scheme

Args:

estimator: (scikit-learn model/estimator object), a scikit-learn model/estimator

18.1. mastml.legos.feature_selectors Module 111

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

n_features_to_select: (int), the number of features to select

cv: (scikit-learn cross-validation object), a scikit-learn cross-validation object

manually_selected_features: (list), a list of features manually set by the user. The feature selector
will first start from this list of features and sequentially add features until n_features_to_select is met.

Methods:

fit: performs feature selection

Args:

X: (dataframe), dataframe of X features

y: (dataframe), dataframe of y data

Xgroups: (dataframe), dataframe of group labels

Returns:

None

transform: performs the transform to generate output of only selected features

Args:

X: (dataframe), dataframe of X features

Returns:

dataframe: (dataframe), dataframe of selected X features

Methods Summary

fit(X, y, savepath[, Xgroups])
transform(X)

Methods Documentation

fit(X, y, savepath, Xgroups=None)

transform(X)

PearsonSelector

class mastml.legos.feature_selectors.PearsonSelector(threshold_between_features,
threshold_with_target, re-
move_highly_correlated_features,
k_features)

Bases: object

Class custom-written for MAST-ML to conduct selection of features based on Pearson correlation coefficent
between features and target. Can also be used for dimensionality reduction by removing redundant features
highly correlated with each other.

Args:

threshold_between_features: (float), the threshold to decide whether redundant features are removed.
Should be a decimal value between 0 and 1. Only used if remove_highly_correlated_features is True

112 Chapter 18. Code Documentation: Feature Selectors

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

threshold_with_target: (float), the threshold to decide whether a given feature is sufficiently corre-
lated with the target feature and thus kept as a selected feature. Should be a decimal value between 0
and 1.

remove_highly_correlated_features: (bool), whether to remove features highly correlated with each
other

k_features: (int), the number of features to select

Methods:

fit: performs feature selection

Args:

X: (dataframe), dataframe of X features

y: (dataframe), dataframe of y data

Returns:

None

transform: performs the transform to generate output of only selected features

Args:

X: (dataframe), dataframe of X features

Returns:

dataframe: (dataframe), dataframe of selected X features

Methods Summary

fit(X, savepath[, y, Xgroups])
transform(X)

Methods Documentation

fit(X, savepath, y=None, Xgroups=None)

transform(X)

18.1. mastml.legos.feature_selectors Module 113

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

18.1.3 Class Inheritance Diagram

EnsembleModelFeatureSelector

MASTMLFeatureSelector

PearsonSelector

114 Chapter 18. Code Documentation: Feature Selectors

CHAPTER 19

Code Documentation: Feature Normalizers

19.1 mastml.legos.feature_normalizers Module

This module contains a collection of classes and methods for normalizing features. Also included is connection with
scikit-learn methods. See http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing for more
info.

19.1.1 Functions

dataframify(transform) Method which is a decorator transforms output of scikit-
learn feature normalizers from array to dataframe.

wraps(wrapped[, assigned, updated]) Decorator factory to apply update_wrapper() to a wrap-
per function

dataframify

mastml.legos.feature_normalizers.dataframify(transform)
Method which is a decorator transforms output of scikit-learn feature normalizers from array to dataframe.
Enables preservation of column names.

Args:

transform: (function), a scikit-learn feature selector that has a transform method

Returns:

new_transform: (function), an amended version of the transform method that returns a dataframe

19.1.2 Classes

115

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

BaseEstimator Base class for all estimators in scikit-learn.
Binarizer(*[, threshold, copy]) Binarize data (set feature values to 0 or 1) according to

a threshold.
MaxAbsScaler(*[, copy]) Scale each feature by its maximum absolute value.
MeanStdevScaler([features, mean, stdev]) Class designed to normalize input data to a specified

mean and standard deviation
MinMaxScaler([feature_range, copy, clip]) Transform features by scaling each feature to a given

range.
Normalizer([norm, copy]) Normalize samples individually to unit norm.
OneHotEncoder(*[, categories, drop, sparse, . . .]) Encode categorical features as a one-hot numeric array.
QuantileTransformer(*[, n_quantiles, . . .]) Transform features using quantiles information.
RobustScaler(*[, with_centering, . . .]) Scale features using statistics that are robust to outliers.
StandardScaler(*[, copy, with_mean, with_std]) Standardize features by removing the mean and scaling

to unit variance
TransformerMixin Mixin class for all transformers in scikit-learn.

MeanStdevScaler

class mastml.legos.feature_normalizers.MeanStdevScaler(features=None, mean=0,
stdev=1)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class designed to normalize input data to a specified mean and standard deviation

Args:

mean: (int/float), specified normalized mean of the data

stdev: (int/float), specified normalized standard deviation of the data

Methods:

fit: Obtains initial mean and stdev of data

Args:

df: (dataframe), dataframe of values to be normalized

Returns:

(self, the object instance)

transform: Normalizes the data to new mean and stdev values

Args:

df: (dataframe), dataframe of values to be normalized

Returns:

(dataframe), dataframe containing re-normalized data and any data that wasn’t nor-
malized

inverse_transform: Un-normalizes the data to the old mean and stdev values

Args:

df: (dataframe), dataframe of values to be un-normalized

Returns:

(dataframe), dataframe containing un-normalized data and any data that wasn’t
normalized

116 Chapter 19. Code Documentation: Feature Normalizers

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Methods Summary

fit(df[, y])
inverse_transform(df)
transform(df)

Methods Documentation

fit(df, y=None)

inverse_transform(df)

transform(df)

19.1.3 Class Inheritance Diagram

BaseEstimator

MeanStdevScaler

TransformerMixin

19.1. mastml.legos.feature_normalizers Module 117

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

118 Chapter 19. Code Documentation: Feature Normalizers

CHAPTER 20

Code Documentation: Randomizers

20.1 mastml.legos.randomizers Module

This module contains a class used to randomize the input y data, in order to create a “null model” for testing how
rigorous other machine learning model predictions are.

20.1.1 Classes

Randomizer() Class which randomizes X-y pairings by shuffling the y
values

Randomizer

class mastml.legos.randomizers.Randomizer
Bases: object

Class which randomizes X-y pairings by shuffling the y values

Args:

None

Methods:

fit: just passes through; present to maintain scikit-learn structure

Args:

None

transform: randomizes the values of a dataframe

Args:

df: (dataframe), a dataframe with data to be randomized

119

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Returns:

(dataframe), a dataframe with randomized data

Methods Summary

fit()
transform(df)

Methods Documentation

fit()

transform(df)

20.1.2 Class Inheritance Diagram

Randomizer

120 Chapter 20. Code Documentation: Randomizers

CHAPTER 21

Code Documentation: Model Finder

21.1 mastml.legos.model_finder Module

This module provides a name_to_constructor dict for all models/estimators in scikit-learn, plus a couple test models
and error handling functions

21.1.1 Functions

check_models_mixed(model_names) Method used to check whether the user has mixed re-
gression and classification tasks

find_model(model_name) Method used to check model names conform to scikit-
learn model/estimator names

check_models_mixed

mastml.legos.model_finder.check_models_mixed(model_names)
Method used to check whether the user has mixed regression and classification tasks

Args:

model_names: (list), list containing names of models/estimators

Returns:

(bool), whether or not a classifier was found, or raises exception if both regression and classification
models present.

find_model

mastml.legos.model_finder.find_model(model_name)
Method used to check model names conform to scikit-learn model/estimator names

121

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Args:

model_name: (str), the name of a model/estimator

Returns:

(str), the scikit-learn model name or raises InvalidModel error

21.1.2 Classes

AlwaysFive([constant]) Class used as a test model that always predicts a value
of 5.

EnsembleRegressor(n_estimators, num_samples,
. . .)
KerasRegressor(conf_dict)
ModelImport(model_path) Class used to import pickled models from previous ma-

chine learning fits
RandomGuesser() Class used as a test model that always predicts random

values for y data.

AlwaysFive

class mastml.legos.model_finder.AlwaysFive(constant=5)
Bases: sklearn.base.RegressorMixin

Class used as a test model that always predicts a value of 5.

Args:

constant: (int), the value to predict. Always 5 by default

Methods:

fit: Just passes through to maintain scikit-learn structure

predict: Provides predicted model values based on X features

Args:

X: (numpy array), array of X features

Returns:

(numpy array), prediction array where all values are equal to constant

Methods Summary

fit(X, y[, groups])
predict(X)

Methods Documentation

fit(X, y, groups=None)

predict(X)

122 Chapter 21. Code Documentation: Model Finder

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

EnsembleRegressor

class mastml.legos.model_finder.EnsembleRegressor(n_estimators, num_samples,
model_list, num_models)

Bases: object

Methods Summary

build_models()
fit(X, Y)
predict(X[, return_std])
setup(path)
stats_check_models(X, Y)

Methods Documentation

build_models()

fit(X, Y)

predict(X, return_std=False)

setup(path)

stats_check_models(X, Y)

KerasRegressor

class mastml.legos.model_finder.KerasRegressor(conf_dict)
Bases: object

Methods Summary

build_model()
fit(X, Y)
predict(X)
summary()

Methods Documentation

build_model()

fit(X, Y)

predict(X)

summary()

ModelImport

class mastml.legos.model_finder.ModelImport(model_path)
Bases: object

21.1. mastml.legos.model_finder Module 123

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Class used to import pickled models from previous machine learning fits

Args:

model_path (str): string designating the path to load the saved .pkl model file

Methods:

fit: Does nothing, present for compatibility purposes

Args:

X: Nonetype

y: Nonetype

groups: Nonetype

predict: Provides predicted model values based on X features

Args:

X: (numpy array), array of X features

Returns:

(numpy array), prediction array using imported model

Methods Summary

fit([X, y, groups]) Only here for compatibility
predict(X)

Methods Documentation

fit(X=None, y=None, groups=None)
Only here for compatibility

predict(X)

RandomGuesser

class mastml.legos.model_finder.RandomGuesser
Bases: sklearn.base.RegressorMixin

Class used as a test model that always predicts random values for y data.

Args:

None

Methods:

fit: Constructs possible predicted values based on y data

Args:

y: (numpy array), array of y data

predict: Provides predicted model values based on X features

Args:

124 Chapter 21. Code Documentation: Model Finder

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

X: (numpy array), array of X features

Returns:

(numpy array), prediction array where all values are random selections of y data

Methods Summary

fit(X, y[, groups])
predict(X)

Methods Documentation

fit(X, y, groups=None)

predict(X)

21.1.3 Class Inheritance Diagram

AlwaysFive

RegressorMixin

RandomGuesser

EnsembleRegressor

KerasRegressor

ModelImport

21.1. mastml.legos.model_finder Module 125

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

126 Chapter 21. Code Documentation: Model Finder

CHAPTER 22

Code Documentation: Utility Legos

22.1 mastml.legos.util_legos Module

This module contains a collection of classes for debugging and control flow

22.1.1 Classes

BaseEstimator Base class for all estimators in scikit-learn.
DataFrameFeatureUnion(transforms) Class for unioning dataframe generators

(sklearn.pipeline.FeatureUnion always puts out ar-
rays)

DoNothing() Class for having a “null” transform where the output is
the same as the input.

TransformerMixin Mixin class for all transformers in scikit-learn.

DataFrameFeatureUnion

class mastml.legos.util_legos.DataFrameFeatureUnion(transforms)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class for unioning dataframe generators (sklearn.pipeline.FeatureUnion always puts out arrays)

Args:

transforms: (list), list of scikit-learn functions, i.e. objects with a .fit or .transform method

Methods:

fit: Applies the .fit method for each transform

Args:

X: (numpy array), array of X features

127

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

transform: Transforms the output of the scikit-learn transformer into a dataframe

Args:

X: (numpy array), array of X features

Returns:

(dataframe), concatenated dataframe after all scikit-learn transforms have been completed

Methods Summary

fit(X[, y])
transform(X)

Methods Documentation

fit(X, y=None)

transform(X)

DoNothing

class mastml.legos.util_legos.DoNothing
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class for having a “null” transform where the output is the same as the input. Needed by MAST-ML as a
placeholder if certain workflow aspects are not performed.

Args:

None

Methods:

fit: does nothing, just returns object instance. Needed to maintain same structure as scikit-learn
classes

Args:

X: (numpy array), array of X features

transform: passes the input back out, in this case the array of X features

Args:

X: (numpy array), array of X features

Returns:

X: (numpy array), array of X features

Methods Summary

fit(X[, y])
transform(X)

128 Chapter 22. Code Documentation: Utility Legos

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Methods Documentation

fit(X, y=None)

transform(X)

22.1.2 Class Inheritance Diagram

BaseEstimator DataFrameFeatureUnion

DoNothingTransformerMixin

22.1. mastml.legos.util_legos Module 129

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

130 Chapter 22. Code Documentation: Utility Legos

CHAPTER 23

Code Documentation: Feature Generators

23.1 mastml.legos.feature_generators Module

This module contains a collection of classes for generating input features to fit machine learning models to.

23.1.1 Functions

clean_dataframe(df) Method to clean dataframes after feature generation has
occurred, to remove columns that have a single missing
or NaN value, or remove a row that is fully empty

clean_dataframe

mastml.legos.feature_generators.clean_dataframe(df)
Method to clean dataframes after feature generation has occurred, to remove columns that have a single missing
or NaN value, or remove a row that is fully empty

Args:

df: (dataframe), a post feature generation dataframe that needs cleaning

Returns:

df: (dataframe), the cleaned dataframe

23.1.2 Classes

BaseEstimator Base class for all estimators in scikit-learn.
ContainsElement(composition_feature, . . . [, . . .]) Class to generate new categorical features (i.e.

Continued on next page

131

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Table 2 – continued from previous page
DataframeUtilities Class of basic utilities for dataframe manipulation, and

exchanging between dataframes and numpy arrays
Magpie(composition_feature[, feature_types]) Class that wraps MagpieFeatureGeneration, giving it

scikit-learn structure
MagpieFeatureGeneration(dataframe, . . .) Class to generate new features using Magpie data and

dataframe containing material compositions
MaterialsProject(composition_feature, api_key) Class that wraps MaterialsProjectFeatureGeneration,

giving it scikit-learn structure
MaterialsProjectFeatureGeneration(dataframe,
. . .)

Class to generate new features using Materials Project
data and dataframe containing material compositions
Datarame must have a column named “Material com-
positions”.

Matminer(structural_features, structure_col) Class to generate structural features from matminer
structure module Args: structural_features: the struc-
ture feature(s) the user wants to instantiate and generate
structure_col: the dataframe column that contains the
pymatgen structure object.

NoGenerate() Class for having a “null” transform where the output is
the same as the input.

PolynomialFeatures([features, degree, . . .]) Class to generate polynomial features using scikit-
learn’s polynomial features method More info
at: http://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.PolynomialFeatures.html

SklearnPolynomialFeatures alias of sklearn.preprocessing._data.
PolynomialFeatures

TransformerMixin Mixin class for all transformers in scikit-learn.

ContainsElement

class mastml.legos.feature_generators.ContainsElement(composition_feature,
element, new_name,
all_elements=False)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class to generate new categorical features (i.e. values of 1 or 0) based on whether an input composition contains
a certain designated element

Args:

composition_feature: (str), string denoting a chemical composition to generate elemental features
from

element: (str), string representing the name of an element

new_name: (str), the name of the new feature column to be generated

all_elments: (bool), whether to generate new features for all elements present from all compositions
in the dataset.

Methods:

fit: pass through, needed to maintain scikit-learn class structure

Args:

df: (dataframe), dataframe of input X and y data

transform: generate new element-specific features

132 Chapter 23. Code Documentation: Feature Generators

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Args:

df: (dataframe), dataframe of input X and y data

Returns:

df_trans: (dataframe), dataframe with generated element-specific features

Methods Summary

fit(df[, y])
transform(df[, y])

Methods Documentation

fit(df, y=None)

transform(df, y=None)

DataframeUtilities

class mastml.legos.feature_generators.DataframeUtilities
Bases: object

Class of basic utilities for dataframe manipulation, and exchanging between dataframes and numpy arrays

Args:

None

Methods:

merge_dataframe_columns : merge two dataframes by concatenating the column names (duplicate
columns omitted)

Args:

dataframe1: (dataframe), a pandas dataframe object

dataframe2: (dataframe), a pandas dataframe object

Returns:

dataframe: (dataframe), merged dataframe

merge_dataframe_rows : merge two dataframes by concatenating the row contents (duplicate rows
omitted)

Args:

dataframe1: (dataframe), a pandas dataframe object

dataframe2: (dataframe), a pandas dataframe object

Returns:

dataframe: (dataframe), merged dataframe

get_dataframe_statistics : obtain basic statistics about data contained in the dataframe

Args:

dataframe: (dataframe), a pandas dataframe object

23.1. mastml.legos.feature_generators Module 133

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Returns:

dataframe_stats: (dataframe), dataframe containing input dataframe statistics

dataframe_to_array : transform a pandas dataframe to a numpy array

Args:

dataframe: (dataframe), a pandas dataframe object

Returns:

array: (numpy array), a numpy array representation of the inputted dataframe

array_to_dataframe : transform a numpy array to a pandas dataframe

Args:

array: (numpy array), a numpy array

Returns:

dataframe: (dataframe), a pandas dataframe representation of the inputted numpy
array

concatenate_arrays : merge two numpy arrays by concatenating along the columns

Args:

Xarray: (numpy array), a numpy array object

yarray: (numpy array), a numpy array object

Returns:

array: (numpy array), a numpy array merging the two input arrays

assign_columns_as_features : adds column names to dataframe based on the x and y feature names

Args:

dataframe: (dataframe), a pandas dataframe object

x_features: (list), list containing x feature names

y_feature: (str), target feature name

Returns:

dataframe: (dataframe), dataframe containing same data as input, with columns
labeled with features

save_all_dataframe_statistics : obtain dataframe statistics and save it to a csv file

Args:

dataframe: (dataframe), a pandas dataframe object

data_path: (str), file path to save dataframe statistics to

Returns:

fname: (str), name of file dataframe stats saved to

Methods Summary

134 Chapter 23. Code Documentation: Feature Generators

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

array_to_dataframe(array)
assign_columns_as_features(dataframe,
. . . [, . . .])
concatenate_arrays(X_array, y_array)
dataframe_to_array(dataframe)
get_dataframe_statistics(dataframe)
merge_dataframe_columns(dataframe1,
dataframe2)
merge_dataframe_rows(dataframe1,
dataframe2)
save_all_dataframe_statistics(dataframe,
. . .)

Methods Documentation

classmethod array_to_dataframe(array)

classmethod assign_columns_as_features(dataframe, x_features, y_feature, re-
move_first_row=True)

classmethod concatenate_arrays(X_array, y_array)

classmethod dataframe_to_array(dataframe)

classmethod get_dataframe_statistics(dataframe)

classmethod merge_dataframe_columns(dataframe1, dataframe2)

classmethod merge_dataframe_rows(dataframe1, dataframe2)

classmethod save_all_dataframe_statistics(dataframe, configdict)

Magpie

class mastml.legos.feature_generators.Magpie(composition_feature, feature_types=None)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class that wraps MagpieFeatureGeneration, giving it scikit-learn structure

Args:

composition_feature: (str), string denoting a chemical composition to generate elemental features
from

Methods:

fit: pass through, copies input columns as pre-generated features

Args:

df: (dataframe), input dataframe containing X and y data

transform: generate Magpie features

Args:

df: (dataframe), input dataframe containing X and y data

Returns:

df: (dataframe), output dataframe containing generated features, original features and y data

23.1. mastml.legos.feature_generators Module 135

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Methods Summary

fit(df[, y])
transform(df)

Methods Documentation

fit(df, y=None)

transform(df)

MagpieFeatureGeneration

class mastml.legos.feature_generators.MagpieFeatureGeneration(dataframe, com-
position_feature,
feature_types)

Bases: object

Class to generate new features using Magpie data and dataframe containing material compositions

Args:

dataframe: (pandas dataframe), dataframe containing x and y data and feature names

composition_feature: (str), string denoting a chemical composition to generate elemental features
from

feature_types: (list), list containing types of magpie features to include in the final dataframe. Op-
tions include [“composition_avg”, “arithmetic_avg”, “max”, “min”, “difference”, “elements”]. Spec-
ifying nothing will include all features.

Methods:

generate_magpie_features : generates magpie feature set based on compositions in dataframe

Args:

None

Returns:

dataframe: (dataframe) : dataframe containing magpie feature set

Methods Summary

generate_magpie_features()

Methods Documentation

generate_magpie_features()

MaterialsProject

class mastml.legos.feature_generators.MaterialsProject(composition_feature,
api_key)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

136 Chapter 23. Code Documentation: Feature Generators

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Class that wraps MaterialsProjectFeatureGeneration, giving it scikit-learn structure

Args:

composition_feature: (str), string denoting a chemical composition to generate elemental features
from

mapi_key: (str), string denoting your Materials Project API key

Methods:

fit: pass through, copies input columns as pre-generated features

Args:

df: (dataframe), input dataframe containing X and y data

transform: generate Materials Project features

Args:

df: (dataframe), input dataframe containing X and y data

Returns:

df: (dataframe), output dataframe containing generated features, original features and y data

Methods Summary

fit(df[, y])
transform(df)

Methods Documentation

fit(df, y=None)

transform(df)

MaterialsProjectFeatureGeneration

class mastml.legos.feature_generators.MaterialsProjectFeatureGeneration(dataframe,
mapi_key,
com-
po-
si-
tion_feature)

Bases: object

Class to generate new features using Materials Project data and dataframe containing material compositions
Datarame must have a column named “Material compositions”.

Args: dataframe: (dataframe), dataframe containing x and y data and feature names

mapi_key: (str), string denoting your Materials Project API key

composition_feature: (str), string denoting a chemical composition to generate elemental features from

Methods:

generate_materialsproject_features : generates materials project feature set based on compositions in
dataframe

23.1. mastml.legos.feature_generators Module 137

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

Args:

None

Returns: dataframe: (dataframe), dataframe containing materials project feature set

Methods Summary

generate_materialsproject_features()

Methods Documentation

generate_materialsproject_features()

Matminer

class mastml.legos.feature_generators.Matminer(structural_features, structure_col)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class to generate structural features from matminer structure module Args:

structural_features: the structure feature(s) the user wants to instantiate and generate structure_col:
the dataframe column that contains the pymatgen structure object. Matminer needs a pymatgen
structure object in order to instantiate the structural feature

Methods: fit: pass through, needed to maintain scikit-learn class structure Args:

df: (dataframe), dataframe of input x and y data

transform: main method that iterates through rows of dataframe to create pymatgen structure objects for
matminer routines. Iterates through list of structural features from conf file and instantiates each structure;
drops unused dataframe columns and returns the generated features dataframe Args:

df: (dataframe), dataframe containing the path of file to create pymatgen structure object which
is under the structure_col column

Returns: (dataframe), the generated features dataframe

Methods Summary

fit(df[, y])
retrieve_AFLOW (criteria, properties[, . . .])
retrieve_MDF(criteria[, anonymous, . . .])
retrieve_MPDS(criteria[, properties, . . .])
retrieve_citrine(criteria, properties, . . .) Gets a Pandas dataframe object from data retrieved

from the Citrine API.
retrieve_mp(criteria[, properties, . . .]) Gets data from MP in a dataframe format.
transform(df[, y])

Methods Documentation

fit(df, y=None)

138 Chapter 23. Code Documentation: Feature Generators

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

retrieve_AFLOW(criteria, properties, files=None, request_size=10000, request_limit=0, in-
dex_auid=True)

retrieve_MDF(criteria, anonymous=False, properties=None, unwind_arrays=True)

retrieve_MPDS(criteria, properties=None, api_key=None, endpoint=None)

retrieve_citrine(criteria, properties, common_fields, secondary_fields, print_properties_options,
api_key)

Gets a Pandas dataframe object from data retrieved from the Citrine API. Args:

criteria (dict): see get_data method for supported keys except prop; prop should be included
in properties.

properties ([str]): requested properties/fields/columns. For example, [“Seebeck coefficient”,
“Band gap”]. If unsure about the exact words, capitalization, etc try something like [“gap”]
and “max_results”: 3 and print_properties_options=True to see the exact options for this
field

common_fields ([str]): fields that are common to all the requested properties. Common ex-
ample can be “chemicalFormula”. Look for suggested common fields after a quick query for
more info

secondary_fields (bool): if True, fields not included in properties may be added to the output
(e.g. references). Recommended only if len(properties)==1’

print_properties_options (bool): whether to print available options for “properties” and
“common_fields” arguments.

api_key: (str) Your Citrine API key, or None if you’ve set the CITRINE_KEY environment
variable

return: (object) Pandas dataframe object containing the results notes/bugs: criteria needs a dictionary, not
specified in get_data() as mentioned,

and example on documentation webpage does not work. What to fix for dataframe integration
into mastml?

retrieve_mp(criteria, properties=[’band_gap’, ’volume’, ’density’, ’formation_energy_per_atom’],
index_mpid=True, api_key=None)

Gets data from MP in a dataframe format. See api_link for more details. Args:

criteria (dict): (str/dict) see MPRester.query() for a description of this parameter. String ex-
amples: “mp-1234”, “Fe2O3”, “Li-Fe-O’, “*2O3”. Dict example: {“band_gap”: {“$gt”:
1}}

properties ([str]): (list) see MPRester.query() for a description of this parameter. Example:
[“formula”, “formation_energy_per_atom”]

plus: “structure”, “initial_structure”, “final_structure”, “bandstructure” (line
mode), “bandstructure_uniform”, “phonon_bandstructure”, “phonon_ddb”,
“phonon_bandstructure”, “phonon_dos”. Note that for a long list of compounds, it
may

take a long time to retrieve some of these objects.

index_mpid (bool): (bool) Whether to set the materials_id as the dataframe index.

api_key: (str) Your Materials Project API key, or None if you’ve set up your pymatgen con-
fig.

Returns (pandas.Dataframe): containing results notes/bugs: works pretty great, API easy to use and accu-
rate. What to fix for

23.1. mastml.legos.feature_generators Module 139

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

dataframe integration into mastml?

transform(df, y=None)

NoGenerate

class mastml.legos.feature_generators.NoGenerate
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class for having a “null” transform where the output is the same as the input. Needed by MAST-ML as a
placeholder if certain workflow aspects are not performed.

Args:

None

Methods:

fit: does nothing, just returns object instance. Needed to maintain same structure as scikit-learn
classes

Args:

X: (dataframe), dataframe of X features

transform: passes the input back out, in this case the array of X features

Args:

X: (dataframe), dataframe of X features

Returns:

(dataframe), dataframe of X features

Methods Summary

fit(X[, y])
transform(X)

Methods Documentation

fit(X, y=None)

transform(X)

PolynomialFeatures

class mastml.legos.feature_generators.PolynomialFeatures(features=None, de-
gree=2, interac-
tion_only=False, in-
clude_bias=True)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Class to generate polynomial features using scikit-learn’s polynomial features method More info at: http://
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

Args:

140 Chapter 23. Code Documentation: Feature Generators

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

degree: (int), degree of polynomial features

interaction_only: (bool), If true, only interaction features are produced: features that are products of
at most degree distinct input features (so not x[1] ** 2, x[0] * x[2] ** 3, etc.).

include_bias: (bool),If True (default), then include a bias column, the feature in which all polynomial
powers are zero (i.e. a column of ones - acts as an intercept term in a linear model).

Methods:

fit: conducts fit method of polynomial feature generation

Args:

df: (dataframe), dataframe of input X and y data

transform: generates dataframe containing polynomial features

Args:

df: (dataframe), dataframe of input X and y data

Returns:

(dataframe), dataframe containing new polynomial features, plus original features present

Methods Summary

fit(df[, y])
transform(df)

Methods Documentation

fit(df, y=None)

transform(df)

23.1. mastml.legos.feature_generators Module 141

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

23.1.3 Class Inheritance Diagram

BaseEstimator

ContainsElement

Magpie

MaterialsProject

Matminer

NoGenerate

PolynomialFeatures

TransformerMixin

DataframeUtilities

MagpieFeatureGeneration

MaterialsProjectFeatureGeneration

142 Chapter 23. Code Documentation: Feature Generators

CHAPTER 24

Indices and tables

• genindex

• modindex

• search

143

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

144 Chapter 24. Indices and tables

Python Module Index

m
mastml.conf_parser, 59
mastml.data_cleaner, 61
mastml.data_loader, 65
mastml.html_helper, 105
mastml.learning_curve, 67
mastml.legos.clusterers, 69
mastml.legos.data_splitters, 71
mastml.legos.feature_generators, 131
mastml.legos.feature_normalizers, 115
mastml.legos.feature_selectors, 109
mastml.legos.model_finder, 121
mastml.legos.randomizers, 119
mastml.legos.util_legos, 127
mastml.mastml_driver, 83
mastml.metrics, 57
mastml.plot_helper, 87
mastml.utils, 77

145

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

146 Python Module Index

Index

A
activate_logging() (in module mastml.utils), 77
adjusted_r2_score() (in module mastml.metrics),

57
AlwaysFive (class in mastml.legos.model_finder), 122
array_to_dataframe()

(mastml.legos.feature_generators.DataframeUtilities
class method), 135

assign_columns_as_features()
(mastml.legos.feature_generators.DataframeUtilities
class method), 135

B
BetweenFilter (class in mastml.utils), 79
Bootstrap (class in mastml.legos.data_splitters), 72
build_model() (mastml.legos.model_finder.KerasRegressor

method), 123
build_models() (mastml.legos.model_finder.EnsembleRegressor

method), 123

C
check_and_fetch_names() (in module

mastml.metrics), 58
check_models_mixed() (in module

mastml.legos.model_finder), 121
check_paths() (in module mastml.mastml_driver),

84
clean_dataframe() (in module

mastml.legos.feature_generators), 131
columns_with_strings() (in module

mastml.data_cleaner), 61
concatenate_arrays()

(mastml.legos.feature_generators.DataframeUtilities
class method), 135

ConfError, 80
ContainsElement (class in

mastml.legos.feature_generators), 132

D
dataframe_to_array()

(mastml.legos.feature_generators.DataframeUtilities
class method), 135

DataFrameFeatureUnion (class in
mastml.legos.util_legos), 127

DataframeUtilities (class in
mastml.legos.feature_generators), 133

dataframify() (in module
mastml.legos.feature_normalizers), 115

dataframify_new_column_names() (in module
mastml.legos.feature_selectors), 109

dataframify_selector() (in module
mastml.legos.feature_selectors), 110

DoNothing (class in mastml.legos.util_legos), 128

E
EnsembleModelFeatureSelector (class in

mastml.legos.feature_selectors), 111
EnsembleRegressor (class in

mastml.legos.model_finder), 123

F
feature_learning_curve() (in module

mastml.learning_curve), 67
FileNotFoundError, 80
FiletypeError, 80
filter() (mastml.utils.BetweenFilter method), 79
find_model() (in module

mastml.legos.model_finder), 121
fit() (mastml.data_cleaner.PPCA method), 63
fit() (mastml.legos.feature_generators.ContainsElement

method), 133
fit() (mastml.legos.feature_generators.Magpie

method), 136
fit() (mastml.legos.feature_generators.MaterialsProject

method), 137
fit() (mastml.legos.feature_generators.Matminer

method), 138
fit() (mastml.legos.feature_generators.NoGenerate

method), 140

147

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

fit() (mastml.legos.feature_generators.PolynomialFeatures
method), 141

fit() (mastml.legos.feature_normalizers.MeanStdevScaler
method), 117

fit() (mastml.legos.feature_selectors.EnsembleModelFeatureSelector
method), 111

fit() (mastml.legos.feature_selectors.MASTMLFeatureSelector
method), 112

fit() (mastml.legos.feature_selectors.PearsonSelector
method), 113

fit() (mastml.legos.model_finder.AlwaysFive method),
122

fit() (mastml.legos.model_finder.EnsembleRegressor
method), 123

fit() (mastml.legos.model_finder.KerasRegressor
method), 123

fit() (mastml.legos.model_finder.ModelImport
method), 124

fit() (mastml.legos.model_finder.RandomGuesser
method), 125

fit() (mastml.legos.randomizers.Randomizer method),
120

fit() (mastml.legos.util_legos.DataFrameFeatureUnion
method), 128

fit() (mastml.legos.util_legos.DoNothing method),
129

fitify_just_use_values() (in module
mastml.legos.feature_selectors), 110

fix_types() (in module mastml.conf_parser), 59
flag_outliers() (in module mastml.data_cleaner),

62

G
generate_magpie_features()

(mastml.legos.feature_generators.MagpieFeatureGeneration
method), 136

generate_materialsproject_features()
(mastml.legos.feature_generators.MaterialsProjectFeatureGeneration
method), 138

get_commandline_args() (in module
mastml.mastml_driver), 84

get_dataframe_statistics()
(mastml.legos.feature_generators.DataframeUtilities
class method), 135

get_divisor() (in module mastml.plot_helper), 89
get_histogram_bins() (in module

mastml.plot_helper), 90
get_n_splits() (mastml.legos.data_splitters.Bootstrap

method), 73
get_n_splits() (mastml.legos.data_splitters.JustEachGroup

method), 73
get_n_splits() (mastml.legos.data_splitters.LeaveCloseCompositionsOut

method), 74

get_n_splits() (mastml.legos.data_splitters.LeaveOutPercent
method), 75

get_n_splits() (mastml.legos.data_splitters.NoSplit
method), 75

get_n_splits() (mastml.legos.data_splitters.SplittersUnion
method), 76

I
imputation() (in module mastml.data_cleaner), 62
indices (mastml.legos.data_splitters.Bootstrap at-

tribute), 72
InvalidConfParameters, 80
InvalidConfSection, 80
InvalidConfSubSection, 80
InvalidModel, 80
InvalidValue, 80
inverse_transform()

(mastml.legos.feature_normalizers.MeanStdevScaler
method), 117

ipynb_maker() (in module mastml.plot_helper), 90
is_test_image() (in module mastml.html_helper),

106
is_train_image() (in module mastml.html_helper),

106

J
JustEachGroup (class in

mastml.legos.data_splitters), 73

K
KerasRegressor (class in

mastml.legos.model_finder), 123

L
LeaveCloseCompositionsOut (class in

mastml.legos.data_splitters), 73
LeaveOutPercent (class in

mastml.legos.data_splitters), 74
load() (mastml.data_cleaner.PPCA method), 63
load_data() (in module mastml.data_loader), 65
log_header() (in module mastml.utils), 78

M
Magpie (class in mastml.legos.feature_generators), 135
MagpieFeatureGeneration (class in

mastml.legos.feature_generators), 136
main() (in module mastml.mastml_driver), 84
make_axis_same() (in module mastml.plot_helper),

90
make_error_plots() (in module

mastml.plot_helper), 90
make_fig_ax() (in module mastml.plot_helper), 90
make_fig_ax_square() (in module

mastml.plot_helper), 91

148 Index

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

make_html() (in module mastml.html_helper), 106
make_image() (in module mastml.html_helper), 106
make_link() (in module mastml.html_helper), 107
make_train_test_plots() (in module

mastml.plot_helper), 91
MastError, 80
mastml.conf_parser (module), 59
mastml.data_cleaner (module), 61
mastml.data_loader (module), 65
mastml.html_helper (module), 105
mastml.learning_curve (module), 67
mastml.legos.clusterers (module), 69
mastml.legos.data_splitters (module), 71
mastml.legos.feature_generators (module),

131
mastml.legos.feature_normalizers (mod-

ule), 115
mastml.legos.feature_selectors (module),

109
mastml.legos.model_finder (module), 121
mastml.legos.randomizers (module), 119
mastml.legos.util_legos (module), 127
mastml.mastml_driver (module), 83
mastml.metrics (module), 57
mastml.plot_helper (module), 87
mastml.utils (module), 77
mastml_run() (in module mastml.mastml_driver), 85
MASTMLFeatureSelector (class in

mastml.legos.feature_selectors), 111
MaterialsProject (class in

mastml.legos.feature_generators), 136
MaterialsProjectFeatureGeneration (class

in mastml.legos.feature_generators), 137
Matminer (class in mastml.legos.feature_generators),

138
MeanStdevScaler (class in

mastml.legos.feature_normalizers), 116
merge_dataframe_columns()

(mastml.legos.feature_generators.DataframeUtilities
class method), 135

merge_dataframe_rows()
(mastml.legos.feature_generators.DataframeUtilities
class method), 135

MissingColumnError, 81
ModelImport (class in mastml.legos.model_finder),

123
mybool() (in module mastml.conf_parser), 60

N
nice_mean() (in module mastml.plot_helper), 92
nice_names() (in module mastml.plot_helper), 92
nice_range() (in module mastml.plot_helper), 92
nice_range() (in module mastml.utils), 78
nice_std() (in module mastml.plot_helper), 92

NoGenerate (class in
mastml.legos.feature_generators), 140

NoSplit (class in mastml.legos.data_splitters), 75

P
parse_conf_file() (in module

mastml.conf_parser), 60
parse_error_data() (in module

mastml.plot_helper), 92
PearsonSelector (class in

mastml.legos.feature_selectors), 112
plot_1d_heatmap() (in module

mastml.plot_helper), 92
plot_2d_heatmap() (in module

mastml.plot_helper), 93
plot_3d_heatmap() (in module

mastml.plot_helper), 93
plot_average_cumulative_normalized_error()

(in module mastml.plot_helper), 94
plot_average_normalized_error() (in mod-

ule mastml.plot_helper), 94
plot_best_worst_per_point() (in module

mastml.plot_helper), 94
plot_best_worst_split() (in module

mastml.plot_helper), 95
plot_confusion_matrix() (in module

mastml.plot_helper), 95
plot_cumulative_normalized_error() (in

module mastml.plot_helper), 96
plot_keras_history() (in module

mastml.plot_helper), 96
plot_learning_curve() (in module

mastml.plot_helper), 96
plot_learning_curve_convergence() (in

module mastml.plot_helper), 97
plot_metric_vs_group() (in module

mastml.plot_helper), 97
plot_metric_vs_group_size() (in module

mastml.plot_helper), 98
plot_normalized_error() (in module

mastml.plot_helper), 98
plot_precision_recall_curve() (in module

mastml.plot_helper), 98
plot_predicted_vs_true() (in module

mastml.plot_helper), 99
plot_predicted_vs_true_bars() (in module

mastml.plot_helper), 99
plot_real_vs_predicted_error() (in module

mastml.plot_helper), 99
plot_residuals_histogram() (in module

mastml.plot_helper), 99
plot_roc_curve() (in module mastml.plot_helper),

100

Index 149

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

plot_scatter() (in module mastml.plot_helper),
100

plot_stats() (in module mastml.plot_helper), 100
plot_target_histogram() (in module

mastml.plot_helper), 101
PolynomialFeatures (class in

mastml.legos.feature_generators), 140
PPCA (class in mastml.data_cleaner), 62
ppca() (in module mastml.data_cleaner), 62
predict() (mastml.legos.model_finder.AlwaysFive

method), 122
predict() (mastml.legos.model_finder.EnsembleRegressor

method), 123
predict() (mastml.legos.model_finder.KerasRegressor

method), 123
predict() (mastml.legos.model_finder.ModelImport

method), 124
predict() (mastml.legos.model_finder.RandomGuesser

method), 125
prediction_intervals() (in module

mastml.plot_helper), 101

R
r2_score_fitted() (in module mastml.metrics), 58
r2_score_noint() (in module mastml.metrics), 58
RandomGuesser (class in mastml.legos.model_finder),

124
Randomizer (class in mastml.legos.randomizers), 119
recursive_max() (in module mastml.plot_helper),

102
recursive_max_and_min() (in module

mastml.plot_helper), 102
recursive_min() (in module mastml.plot_helper),

102
remove() (in module mastml.data_cleaner), 62
retrieve_AFLOW() (mastml.legos.feature_generators.Matminer

method), 138
retrieve_citrine()

(mastml.legos.feature_generators.Matminer
method), 139

retrieve_MDF() (mastml.legos.feature_generators.Matminer
method), 139

retrieve_mp() (mastml.legos.feature_generators.Matminer
method), 139

retrieve_MPDS() (mastml.legos.feature_generators.Matminer
method), 139

rmse_over_stdev() (in module mastml.metrics), 58
root_mean_squared_error() (in module

mastml.metrics), 58
round_down() (in module mastml.plot_helper), 102
round_up() (in module mastml.plot_helper), 103
rounder() (in module mastml.plot_helper), 103

S
sample_learning_curve() (in module

mastml.learning_curve), 68
save() (mastml.data_cleaner.PPCA method), 63
save_all_dataframe_statistics()

(mastml.legos.feature_generators.DataframeUtilities
class method), 135

setup() (mastml.legos.model_finder.EnsembleRegressor
method), 123

show_combo() (in module mastml.html_helper), 107
simple_section() (in module mastml.html_helper),

107
split() (mastml.legos.data_splitters.Bootstrap

method), 73
split() (mastml.legos.data_splitters.JustEachGroup

method), 73
split() (mastml.legos.data_splitters.LeaveCloseCompositionsOut

method), 74
split() (mastml.legos.data_splitters.LeaveOutPercent

method), 75
split() (mastml.legos.data_splitters.NoSplit method),

75
split() (mastml.legos.data_splitters.SplittersUnion

method), 76
SplittersUnion (class in

mastml.legos.data_splitters), 75
stat_to_string() (in module mastml.plot_helper),

103
stats_check_models()

(mastml.legos.model_finder.EnsembleRegressor
method), 123

summary() (mastml.legos.model_finder.KerasRegressor
method), 123

T
transform() (mastml.data_cleaner.PPCA method),

63
transform() (mastml.legos.feature_generators.ContainsElement

method), 133
transform() (mastml.legos.feature_generators.Magpie

method), 136
transform() (mastml.legos.feature_generators.MaterialsProject

method), 137
transform() (mastml.legos.feature_generators.Matminer

method), 140
transform() (mastml.legos.feature_generators.NoGenerate

method), 140
transform() (mastml.legos.feature_generators.PolynomialFeatures

method), 141
transform() (mastml.legos.feature_normalizers.MeanStdevScaler

method), 117
transform() (mastml.legos.feature_selectors.EnsembleModelFeatureSelector

method), 111

150 Index

MAterials Simulation Toolkit for Machine Learning (MAST-ML) Documentation, Release 2.0

transform() (mastml.legos.feature_selectors.MASTMLFeatureSelector
method), 112

transform() (mastml.legos.feature_selectors.PearsonSelector
method), 113

transform() (mastml.legos.randomizers.Randomizer
method), 120

transform() (mastml.legos.util_legos.DataFrameFeatureUnion
method), 128

transform() (mastml.legos.util_legos.DoNothing
method), 129

trim_array() (in module mastml.plot_helper), 103

V
verbosalize_logger() (in module mastml.utils),

78

Index 151

	Acknowledgements
	Installing MAST-ML
	Hardware and Data Requirements
	Terminal installation (Linux or linux-like terminal on Mac)
	Windows installation
	Startup

	MAST-ML Input File
	Input file sections

	MAST-ML overview slides
	Running MAST-ML on Google Colab
	MAST-ML tutorial
	Introduction
	Your first MAST-ML run
	Cleaning input data
	Feature generation and normalization
	Training and evaluating your first model
	Feature selection and learning curves
	Hyperparameter optimization
	Random leave-out versus leave-out-group cross-validation
	Making predictions by importing a previously fit model
	Predicting values for new, extrapolated data

	Code Documentation: Metrics
	mastml.metrics Module

	Code Documentation: Configuration file parser
	mastml.conf_parser Module

	Code Documentation: Data cleaner
	mastml.data_cleaner Module

	Code Documentation: Data loader
	mastml.data_loader Module

	Code Documentation: Learning curve
	mastml.learning_curve Module

	Code Documentation: Clusterers
	mastml.legos.clusterers Module

	Code Documentation: Data splitters
	mastml.legos.data_splitters Module

	Code Documentation: Utils
	mastml.utils Module

	Code Documentation: MAST-ML Driver
	mastml.mastml_driver Module

	Code Documentation: Plot Helper
	mastml.plot_helper Module

	Code Documentation: HTML Helper
	mastml.html_helper Module

	Code Documentation: Feature Selectors
	mastml.legos.feature_selectors Module

	Code Documentation: Feature Normalizers
	mastml.legos.feature_normalizers Module

	Code Documentation: Randomizers
	mastml.legos.randomizers Module

	Code Documentation: Model Finder
	mastml.legos.model_finder Module

	Code Documentation: Utility Legos
	mastml.legos.util_legos Module

	Code Documentation: Feature Generators
	mastml.legos.feature_generators Module

	Indices and tables
	Python Module Index
	Index

